

AFRL-IF-RS-TR-2006-352
Final Technical Report
December 2006

QUANTUM COMPUTING AND HIGH
PERFORMANCE COMPUTING

General Electric Global Research

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Rome
Research Site Public Affairs Office and is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information
Center (DTIC) (http://www.dtic.mil).

AFRL-IF-RS-TR-2006-352 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

EARL M. BEDNAR JAMES A. COLLINS, Deputy Chief
Work Unit Manager Advanced Computing Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

DEC 2006
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Apr 06 – Oct 06
5a. CONTRACT NUMBER

FA8750-05-C-0058

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

QUANTUM COMPUTING AND HIGH PERFORMANCE COMPUTING

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER
NBGQ

5e. TASK NUMBER
10

6. AUTHOR(S)

Kareem S. Aggour, Robert M. Mattheyses, Joseph Shultz, Brent H. Allen and
Michael Lapinski

5f. WORK UNIT NUMBER
07

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

General Electric Global Research
1 Research Circle
Niskayuna NY 12309-1027

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFTC
525 Brooks Rd
Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2006-352

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 06-795

13. SUPPLEMENTARY NOTES

14. ABSTRACT
GE Global Research has enhanced a previously developed general-purpose quantum computer simulator, improving its efficiency
and increasing its functionality. Matrix multiplication operations in the simulator were optimized by taking advantage of the
particular structure of the matrices, significantly reducing the number of operations and memory overhead. The remaining
operations were then distributed over a cluster, allowing feasible compute times for large quantum systems. The simulator was
augmented to evaluate a step-by-step comparison of a quantum algorithm’s ideal execution to its real-world performance, including
errors. To facilitate the study of error propagation in a quantum system, the simulator’s graphical user interface was enhanced to
visualize the differences at each step in the algorithm’s execution. To verify the simulator’s accuracy, three ion trap-based
experiments were simulated. The simulator output closely matches experimentalist’s results, indicating that the simulator can
accurately model such devices. Finally, alternative hardware platforms were researched to further improve the simulator
performance. An FPGA-based accelerator was designed and simulated, resulting in substantial performance improvements over the
original simulator. Together, this research produced a highly efficient quantum computer simulator capable of accurately modeling
arbitrary algorithms on any hardware device.
15. SUBJECT TERMS

Quantum Computing, FPGA, Quantum Computer Simulator, Paralelize

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Capt Earl Bednar

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

71
19b. TELEPHONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

Table of Contents

1.0 PROJECT GOALS ...1

1.1 Enhance Existing Quantum Computer Simulator1
1.2 Verify Simulator’s Accuracy Against Experimental Data.........................1
1.3 Simulate Quantum Simulator on an FPGA ...1

2.0 SIMULATOR OVERVIEW..2
2.1 State Representation and the Master Equation2
2.2 Evaluating Algorithms in Quantum eXpress ...3

2.2.1 Input ..3
2.2.2 Algorithm Simulation..7
2.2.3 Output..11

3.0 SUMMARY OF KEY ACCOMPLISHMENTS..12
4.0 DETAILS OF KEY ACCOMPLISHMENTS...13

4.1 Performance Enhancement via Matrix Multiplication Optimizations13
4.1.1 Test Cases ..13
4.1.2 Multiplication Optimizations ...15
4.1.3 Optimization Results..24

4.2 Port to High Performance Computing Cluster.......................................25
4.2.1 Density Matrix Distribution...28
4.2.2 Distributed Simulation..29

4.3 Ideal vs. Actual Density Matrix Comparisons..33
4.3.1 Visualizing Matrix Differences ...34

4.4 Simulator Verification..35
4.4.1 Experimental Data Collection ..35
4.4.2 Modeling Experiments in the Simulator ...36
4.4.3 Results Analysis ..45

4.5 Field Programmable Gate Array-Accelerated Simulation47
4.5.1 FPGA Hardware & Tools ...48
4.5.2 FPGA Design ..50
4.5.3 Design Limitations ...56
4.5.4 Testing Procedure ...57
4.5.5 Results ..57

5.0 CONCLUSIONS...59
5.1 Proposed Future Work..60

6.0 ACKNOWLEDGEMENTS ..61
7.0 REFERENCES...62
Appendix A – FPGA Floating Point Formats...64

i

Table of Figures

Figure 1: Sample State XML Configuration File ..5
Figure 2: Sample Algorithm XML Configuration File for 3 Qubit Test Case6
Figure 3: Sample Gate XML Configuration File ..6
Figure 4: Simulation Without Decoherence Function ..7
Figure 5: Simulation With Decoherence Function...9
Figure 6: Sample Decoherence Matrix in XML ...10
Figure 7: Sample Noise in XML ..11
Figure 8: 3 Qubit Test Case..13
Figure 9: 5 Qubit Test Case..13
Figure 10: 7 Qubit Test Case (Shor’s Algorithm) ..14
Figure 11: 3 Qubit Inverse Fourier Transform for 7 Qubit Test Case..................14
Figure 12: Non-Optimized, No Decoherence Matrix Simulation..........................16
Figure 13: Standard No Decoherence Matrix Simulation18
Figure 14: Canonical Density Matrix Multiplication, N = 4, g = 2.........................19
Figure 15: Density Matrix Permutation Algorithm..20
Figure 16: First Portion of 7 Qubit Shor’s Algorithm..21
Figure 17: First Portion of 7 Qubit Shor’s Algorithm with Permutation21
Figure 18: Phase Decoherence Matrix Simulation Algorithm..............................23
Figure 19: Simulation Performance Improvement...25
Figure 20: Quantum eXpress Connected to Either a Local or Remote Server....26
Figure 21: Script to Start Web Server on Head Node (startWebServer.sh)26
Figure 22: Script to Start a Cluster Node (startNode.sh).....................................27
Figure 23: XML Configuration for Head Node to Find Cluster Nodes (nodes.xml)

...27
Figure 24: Cluster Node Communication ..28
Figure 25: Density Matrix Column Division Example, N = 4, g = 2......................29
Figure 26: Density Matrix Row Division Example, N = 4, g = 2...........................29
Figure 27: Distributed Simulation Algorithm..30
Figure 28: Distributed Simulation Times vs. Number of Nodes...........................31
Figure 29: Distributed Simulation Improvements Compared to Non-Distributed

Implementation ..32
Figure 30: Decoherence Simulation Performance Improvement from Original

Implementation ..33
Figure 31: Example Matrix Difference Visualizations, N = 334
Figure 32: Ideal vs. Actual Matrix Calculation XML Parameter35
Figure 33: Deutsch-Jozsa Algorithm [11] ..37
Figure 34: Experimental Implementation of the Deutsch-Jozsa Algorithm [11]...37
Figure 35: GUI View of the Deutsch-Jozsa Circuits ..38
Figure 36: Grover Algorithm [12]...41
Figure 37: Experimental Implementation of the Grover Algorithm [12]................41
Figure 38: GUI View of a Grover Circuit..42
Figure 39: Experimental Implementation of the Semi-classical QFT Algorithm ..43
Figure 40: GUI View of the Semi-classical QFT Circuit.......................................44
Figure 41: FPGA & GPP Simulator Architecture...50

ii

Figure 42: Architecture of Original GPP Implementation51
Figure 43: Architecture of FPGA Implementation ...52
Figure 44: Iteration Reduction in Evaluating Master Equation for Gate Size g = 2

...53
Figure 45: Iteration Reduction in Evaluating Master Equation for Gate Size g = 3

...53
Figure 46: Un-Optimized Pipeline ...54
Figure 47: Optimized Pipeline...54
Figure 48: DIMETalk Diagram for the FPGA Accelerator....................................56
Figure 49: Speed-up of FPGA vs. Single Processor GPP Implementation58
Figure 50: Floating Point Formats...64

iii

Table of Tables

Table 1: Simulation Times Before Optimization ...15
Table 2: Post-Optimization Simulation Times ...24
Table 3: Decoherence Improvement from Original Implementation....................24
Table 4: Distributed Simulation Times ..30
Table 5: Distributed Simulation Time Improvement Compared to Non-Distributed

Simulation ..31
Table 6: Distributed Simulation Time Comparison ..32
Table 7: Decoherence Improvement from Original Implementation....................33
Table 8: Ideal vs. Actual Heatmap Default Cutoffs..34
Table 9: Constant and Balanced Functions ..37
Table 10: Deutsch-Jozsa Simulator Results with No Noise39
Table 11: Grover Simulator Results with No Noise ...42
Table 12: Semi-classical QFT Simulator Results with No Noise.........................45
Table 13: Simulation Maximum Absolute Probability Error with No Noise (%)....45
Table 14: Experimental and Simulation Fidelities (%)...46
Table 15: Minimum Gate Noise for Comparable Experimental and Simulation

Fidelities ..47
Table 16: Precision Comparison for 3 Qubit Test Case59
Table 17: Precision Comparison for 5 Qubit Test Case59

iv

1.0 PROJECT GOALS
This effort is based on a quantum computer simulator designed and developed
by GE Global Research (GEGR) and Lockheed Martin (LM) from 2002 through
2004. The simulator, Quantum eXpress (QX), is capable of accurately simulating
any quantum algorithm on any quantum hardware device and is capable of
simulating errors from both hardware device imperfections and decoherence.

1.1 Enhance Existing Quantum Computer Simulator
The first objective of this research was to enhance QX, improving its efficiency
and increasing its functionality. These enhancements began with researching
improvements in the matrix multiplication algorithms used for simulating gate
operations. Next, GEGR ported QX to Rome Labs’ high performance-computing
environment to significantly increase the performance of the system and the
number of qubits that can be simulated by exploiting parallelism. Finally, QX was
enhanced to simulate, in parallel, the algorithm's execution in both ideal and
actual circumstances. Representing the state of the system under both
conditions and visualizing the difference at each step can provide important
capabilities for studying the effects of errors and error propagation in a quantum
system. Increasing the simulator’s functionality and improving its performance
through these approaches will enable the investigation of error correction
schemes, which will allow researchers to quantify the amount of error correction
required to develop a large-scale quantum computer with high fidelity.

1.2 Verify Simulator’s Accuracy Against Experimental Data
The second goal of this project was to verify the simulator’s accuracy by
comparing its results to published data from experimental quantum computers.
Ion trap quantum computers were chosen for the comparison, for two main
reasons. First, they are one of the most promising implementations of quantum
computers, with a vigorous research community. Second, the existing Quantum
eXpress simulations were based on nuclear magnetic resonance, and testing
against ion trap experiments would both be an independent validation and extend
the existing library of simulations.

The main steps involved in this validation were:

• Identification of published experiments
• Acquisition of experimental data
• Modeling of the experiments in Quantum eXpress
• Comparison of the simulation and ideal results
• Comparison of the simulation and experimental results

1.3 Simulate Quantum Simulator on an FPGA
The final goal of this effort was to research alternative hardware platforms to
improve the performance of the quantum computer simulator. The application of
Field Programmable Gate Arrays (FPGAs) to this problem could significantly
increase both the speed of quantum simulation runs and the number of qubits

1

that could be simulated, providing a very promising route to improve the
applicability of quantum computer simulation to the general quantum computing
research community. GEGR selected a specific FPGA device and associated
memory model to be simulated, and then developed an FPGA-based simulation
of the Quantum eXpress engine. This FPGA simulation was used to determine
efficient data mappings for quantum algorithm simulations, in order to minimize
memory contention and gain the greatest possible acceleration in the simulator’s
performance.

2.0 SIMULATOR OVERVIEW
Quantum Computing (QC) research has gained momentum due to several
theoretical analyses that indicate that QC is significantly more efficient at solving
certain classes of problems than classical computing [1]. While experimental
validation will be required, the primitive nature of today’s QC hardware only
allows practical testing of trivial examples. Thus, a robust simulator is needed to
study complex quantum computing issues. Most QC simulators model ideal
operations and cannot predict the actual time required to execute an algorithm,
nor can they quantify the effects of errors in the calculation. GE Global Research
and Lockheed Martin jointly developed a QC simulator, Quantum eXpress, that
models a variety of physical hardware implementations. Quantum eXpress (QX)
also allows for the simulation of errors in a quantum computer. Errors typically
arise from two sources: 1) hardware device imperfections, and 2) decoherence
(the natural tendency of a quantum system to interact with its environment and
move from an ordered state to a random state). Both of these sources of error
can be simulated.

Most quantum computer simulators are designed to simulate a single algorithm,
most commonly Shor’s factoring algorithm, on a single type of hardware. QX can
be used to implement any quantum algorithm running on any type of hardware,
and can report projected algorithm execution times on the quantum device.

QX has a flexible architecture that can be configured entirely through XML files.
This enables researchers to explore new algorithms and gate architectures in-
silico before they can be physically realized, without having to write any code.
QX has been developed entirely in Java 1.4.2 using object-oriented design
paradigms. It is platform independent, and has been successfully executed in
Windows, UNIX, and Linux environments [2].

2.1 State Representation and the Master Equation
Most quantum computer simulators deal only with pure states and thus cannot
accommodate direct error simulation. QX uses the density matrix quantum state
representation and time evolution according to a master equation, allowing us to
naturally simulate the effects of decoherence. The simulator’s ability to
accommodate decoherence does come at a price, however. In the density
matrix representation, a state of N qubits is represented by a 2Nx2N square matrix

2

instead of a 2N-element vector. Because QX uses the density matrix
representation, it cannot handle as many qubits as a pure-state simulator could.

In the absence of decoherence, a state vector (i.e., a general superposition)
evolves in time during a single operation according to a Schrödinger equation [3]:

ψψ H
dt
di =h , (1)

where the matrix H is known as a Hamiltonian, which is some linear Hermitian
operator, and ħ is a physical constant known as Planck’s constant. An operator
(represented as a matrix) is called Hermitian if it is equal to its own transposed
complex-conjugate. The vector ψ , known as a ‘ket’, is the complex vector
associated with state ψ. In the presence of decoherence, and with some
approximations, the evolution is described more generally by a “master equation”
such as [4]:

]],[,[],[ρρρ VVHi
dt
d

−−=h , (2)

where square brackets denote commutators (the commutator of two matrix
operators A and B is denoted [A,B]) defined as:

BAABBA −=],[(3)

and ρ is a density matrix, a natural way of representing a statistical distribution of
states. For a pure state (a completely known superposition), the density matrix
has the form [4]:

ψψρ = , (4)

where ψ is the complex conjugate (also referred to as the ‘bra’) of ψ . ψψ
denotes the outer product of the ket and bra. A state remains pure (no
decoherence) if V=0 in (2), in which case the master equation is equivalent to the
Schrödinger equation from (1). Otherwise, the master equation describes, in a
statistical sense, the decohering influence of the environment.

2.2 Evaluating Algorithms in Quantum eXpress

2.2.1 Input
Quantum eXpress requires two primary inputs: (1) a state file and (2) an
algorithm file. In the state file a ‘base’ must be specified, indicating whether the
states of the system represent qubits (base 2), qutrits (base 3), or more. While
this document will always refer to qubits (2N), it should be understood that QX
can also handle qutrits (3N) and other higher-order base states, at the user’s

3

discretion. The initial state of the system is represented by a vector of 2N
elements (again, presuming base 2), where N is the number of distinct qubits.

The base and initial states of Quantum eXpress are specified in an eXtensible
Mark-up Language (XML) file using the World Wide Web Consortium’s (W3C
2001) Mathematical Mark-up Language (MathML) specification. This file
contains sets of vectors defining both the initial states and ‘states of interest’.
These states are effectively identical in construction, except the initial states also
have probability values associated with them indicating the probability that the
initial system is in that state. States of interest are defined for the purpose of
allowing QX to observe certain states. At any time during the execution of an
algorithm, the system can be evaluated to determine the probability of it being in
each of these observed states. At the end of the execution of an algorithm, the
probabilities of each of the states of interest are displayed to give an indication of
the final superposition of the system. An excerpt from a state configuration file
for a base 2, 3 qubit system can be seen in Figure 1. From this figure, we can
see that the vectors for both the initial and interest states are complex with 23 = 8
elements per vector.

<quantum-states>
 <class>com.quantum.system.qx.QuantumSystemQX</class>
 <base> 2 </base>
 <qu-number> 3 </qu-number>

 <initial-states>
 <state> <!-- |000> + |100> -->
 <id> 000 + 100 </id>
 <vector>
 <cn type="complex-cartesian"> 0.70710678118654752 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 0.70710678118654752 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>
 </vector>
 <probability> 1 </probability>
 </state>
 </initial-states>

 <interest-states>
 <state> <!-- |000> -->
 <id> 000 </id>
 <vector>
 <cn type="complex-cartesian"> 1 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>

4

 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>
 </vector>
 </state>
 <state> <!-- |001> -->
 <id> 001 </id>
 <vector>
 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 1 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>
 <cn type="complex-cartesian"> 0 <sep/> 0 </cn>
 </vector>
 </state>
 <!-- ... -->
 </interest-states>

</quantum-states>

Figure 1: Sample State XML Configuration File

The other required input is a second XML file that describes the quantum
algorithm to be executed. The algorithm includes what gate operations to run
and on which qubits those operations are performed. This file is maintained
separately from the initial state file, so that a single algorithm can be easily
executed with various initial states. An example algorithm configuration file for a
3 qubit system can be seen in Figure 2. From this figure, we can see that each
gate operates on a specific set of qubits.

<quantum-circuit>
 <name>Algorithm Name</name>
 <qu-number>3</qu-number>
 <n>100</n>

 <algorithm>
 <unitary>
 <operator>CNot</operator>
 <a>1
 <qu>1</qu>
 <qu>2</qu>
 </unitary>
 <unitary>
 <operator>CNot</operator>
 <a>2
 <qu>2</qu>
 <qu>3</qu>
 </unitary>
 <unitary>
 <operator>CNot</operator>
 <a>4
 <qu>1</qu>
 <qu>2</qu>

5

 </unitary>
 </algorithm>
</quantum-circuit>

Figure 2: Sample Algorithm XML Configuration File for 3 Qubit Test Case

Figure 2 repeatedly references a specific unitary operator—the CNot gate. The
definition of the CNot, and any other gate elements that may be referenced in an
algorithm, are kept in separate gate configuration files. As an example, the CNot
gate XML configuration file can be seen in Figure 3. These files are maintained
separately from the algorithm so that they can be easily reused. These files
include the base of the quantum system, the Hamiltonian to apply, the amount of
time the Hamiltonian needs to be applied, and the ideal unitary operator matrix
that the Hamiltonian, perfectly applied for the specified time, should produce.

<gate>
 <base>2</base>
 <ideal>
 <matrix>
 <matrixrow>
 <cn>1</cn> <cn>0</cn> <cn>0</cn> <cn>0</cn>
 </matrixrow>
 <matrixrow>
 <cn>0</cn> <cn>1</cn> <cn>0</cn> <cn>0</cn>
 </matrixrow>
 <matrixrow>
 <cn>0</cn> <cn>0</cn> <cn>0</cn> <cn>1</cn>
 </matrixrow>
 <matrixrow>
 <cn>0</cn> <cn>0</cn> <cn>1</cn> <cn>0</cn>
 </matrixrow>
 </matrix>
 </ideal>
 <hamiltonian>
 <matrix>
 <matrixrow>
 <cn>0</cn> <cn>0</cn> <cn>0</cn> <cn>0</cn>
 </matrixrow>
 <matrixrow>
 <cn>0</cn> <cn>0</cn> <cn>0</cn> <cn>0</cn>
 </matrixrow>
 <matrixrow>
 <cn>0</cn> <cn>0</cn> <ci> a </ci> <ci> -a </ci>
 </matrixrow>
 <matrixrow>
 <cn>0</cn> <cn>0</cn> <ci> -a </ci> <ci> a </ci>
 </matrixrow>
 </matrix>
 </hamiltonian>
 <time>pi / (2 * a) </time>
</gate>

Figure 3: Sample Gate XML Configuration File

6

2.2.2 Algorithm Simulation
Quantum simulators need a succinct method for describing quantum systems
and their operations. Since a state is represented as a vector (ket), a statistical
ensemble of states is naturally represented as a matrix, referred to as a
(probability) density matrix. The density matrix describes the current state of the
quantum system. The execution of a quantum algorithm can be viewed as the
multiplication of a system’s density matrix with other matrices that represent
quantum operations.

The initial states and their probabilities determine the initial density matrix of the
system using the equation:

∑
=

〉〈=
states
init

k
kkkp

#

1
||)(ρ , (5)

where p(k) is the probability of state k. Equation (5) allows us to define the initial
density matrix ρ of the system.

A third input into the system is a set of ‘gate’ XML files that define the structure of
these operations. Each gate is a unitary operator, which is defined by a
Hamiltonian matrix and a time ∆t over which it is applied. This is described by
the following equation:

h/)(tiHetU ∆−=∆ , (6)

where U is the unitary operator and H is the Hamiltonian for the gate.

Simulation Without Decoherence
If we do not simulate decoherence in the master equation in (2), the operators
U(∆t) are applied to the density matrix ρ according to the following equation:

†)()()()(tUttUtt ∆∆=∆+ ρρ . (7)

To minimize the numerical error in the simulation, instead of calculating the
density matrix ρ once after the full time step ∆t, QX divides the time step by some
value n, and repeatedly calculates the next value of ρ. Figure 4 shows this
function. In Quantum eXpress, n is set to 100.

for i = 1 to n
†)()()()(

n
tUt

n
tU

n
tt ∆∆
=

∆
+ ρρ

Figure 4: Simulation Without Decoherence Function

7

Here U(∆t)† is the Hermitian conjugate of U(∆t). The gate XML file contains the
matrix H and ∆t in MathML format. Each gate may act on a different number of
possible qubits, as some apply to single qubits (e.g., Not), some apply to two
(e.g., CNot {Conditional Not} and Swap), and so on. The exact Hamiltonian to
apply and for how long depends on (a) the type of gate operation and (b) the type
of hardware. E.g., a ‘Not’ gate may have different Hamiltonians depending on
the type of hardware modeled.

The exponentiation of the matrix H in (6) is evaluated using the Taylor Series
expansion of ex:

...
!

...
!3!2

1
!

32

0
++++++== ∑

∞

= k
xxxx

k
xe

k

k

k
x (8)

Combining (6) and (8), the unitary operator U may be written as:

32/)(
!3

)(
!2

1)(
hhh

h tHitHtiHIetU tiH ∆
+

∆
−

∆
−≈=∆ ∆− . (9)

Note that the approximation of e-iH∆t/ħ uses the third-order of the Taylor Series
expansion. This could be increased to improve the numerical accuracy of the
simulator (though it would negatively impact its efficiency). Using the cubic
expansion produces numerical errors on the order of 10-5, which for most
evaluations is quite sufficient. Equations (5) through (9) illustrate, using the no-
decoherence case, how the simulator evaluates quantum algorithms.

Simulating Decoherence
If decoherence is simulated, the master equation in (2) can be represented as:

[] [] []HH VVVVHi
dt
d ρρρρ ,,, ++−= , (10)

where V is a matrix that represents decoherence being applied to the quantum
system. If we assume the V decoherence matrices can be applied to each qubit
N in the density matrix independently, then (10) can be represented as:

[] [] []()∑
=

++−=
N

j

H
jj

H
jj VVVVHi

dt
d

1

,,, ρρρρ . (11)

A second-order discrete-time approximation of (11) can be written as [5]:

() ()ttttt ρρ
⎭
⎬
⎫

⎩
⎨
⎧

Ω
∆

+Ω∆+≈∆+ 2
2

!2
1 , (12)

8

where

[] [] []()∑
=

++−=Ω
N

j

H
jj

H
jj VVVVHi

1

,,, ρρρρ (13)

and

[] [] []()∑
=

Ω+Ω+Ω−=Ω
N

j

H
jj

H
jj VVVVHi

1

2 ,,, ρρρρ . (14)

Using the commutator defined in (3) to expand ρΩ and we obtain: ρ2Ω

()∑
=

−−+−−=Ω
N

j
j

H
jj

H
j

H
jj VVVVVVHHi

1

2)(ρρρρρρ (15)

and

()∑
=

Ω−Ω−Ω+Ω−Ω−=Ω
N

j
j

H
jj

H
j

H
jj VVVVVVHHi

1

2 2)(ρρρρρρ . (16)

From the substitution of (15) and (16) into (12) we can determine the complete
simulation of a quantum algorithm with decoherence requires 12N+4 matrix
multiplication at each time step ∆t, where N is the number of qubits in the
system. To minimize the numerical error in (12), instead of calculating the
density matrix ρ once after the full time step ∆t, QX divides the time step by some
value n, and repeatedly calculates the next value of ρ. Figure 5 shows this
function. In Quantum eXpress, n is set to 100. Due to these n iterations, we find
that the evaluation of a quantum algorithm with decoherence requires
(12N+4)*100 matrix multiplications at each time step.

for i = 1 to n

()t
n
t

n
t

n
tt ρρ

⎭
⎬
⎫

⎩
⎨
⎧

Ω
∆

+Ω
∆

+≈⎟
⎠
⎞

⎜
⎝
⎛ ∆
+ 22)(

!2
11

Figure 5: Simulation With Decoherence Function

Decoherence Examples
Two forms of decoherence can be simulated in Quantum eXpress, phase
damping and amplitude damping [6, 7].

Phase Damping
When we talk about “measuring” a qubit in the computational basis, we’re talking
about a process in which the qubit modifies its macroscopic environment one

9

way if it is in the state 0 and modifies it a different way if it is in the state 1 . If
the qubit is in a superposition of these, then unitarity implies that the same
interaction causes it to become entangled with the macroscopic environment.
The result is either a 0 or a 1 , and the original superposition is lost. This is an
example of “phase damping.”

More generally, phase damping is any interaction between the qubit and its
environment in which:

• If the qubit is 0 , it affects the environment one way and remains 0

• If the qubit is 1 , it affects the environment a different way and remains

1 .

An example of such an interaction is:

⎥
⎦

⎤
⎢
⎣

⎡
=

b
V

0
00

 (17)

for some constant b . This says that a qubit in state 0 does nothing to its

environment, but a qubit in state 1 does something. The matrix V is optionally
included in the algorithm configuration file. An example phase damping matrix is
shown in Figure 6, exactly as it would be included in the configuration file. The
absence of such a matrix, or the inclusion of an all-zero decoherence matrix
indicates to the simulator that the algorithm should be executed sans
decoherence.

 <decoherence>
 <matrix>
 <matrixrow>
 <cn> 0 </cn> <cn> 0 </cn>
 </matrixrow>
 <matrixrow>
 <cn> 0 </cn> <cn> 0.005 </cn>
 </matrixrow>
 </matrix>
 </decoherence>

Figure 6: Sample Decoherence Matrix in XML

Amplitude Damping

Suppose that a qubit in state 1 can “decay” into state 0 by emitting a photon.
This does two things: first, unlike phase damping, it changes the state of the
qubit (unless it was 0 already). Second, like phase damping, it causes 0 and

1 to affect the environment in different ways. Only one of these two states can

10

emit a photon into the environment. Because of the second effect, this is another
example of decoherence. It is called “amplitude damping” because no matter
what state we start with, we eventually end up with 0 .

An example of an amplitude-damping interaction is:

⎥
⎦

⎤
⎢
⎣

⎡
=

00
0 b

V (18)

for some constant b . This says that nothing happens to a qubit in state 0 , but

a qubit in state 1 can change into 0 .

Simulating Device Imperfections/Noise
Noise due to device imperfections and other factors is at the gate level, and
therefore, there is a different noise element potentially associated with each gate.
Noise is simulated in QX by modifying the time with which a gate’s Hamiltonian is
applied to the quantum system. This means that the matrices used to simulate
an algorithm do not change, and therefore, no new equations are required to
simulate noise. QX will use the standard decoherence or decoherence-free
equations for simulating the algorithm, and only add Gaussian noise to the gate
application times. An example Gaussian noise element (defined by a mean and
standard deviation) is shown in Figure 7, exactly as it would be included in the
gate configuration file.

 <noise>
 <mean>0</mean>
 <stddev>0.0005</stddev>
 </noise>

Figure 7: Sample Noise in XML

2.2.3 Output
At the completion of the evaluation of an algorithm, we wish to understand the
final superposition of the quantum system. The states of interest from Figure 1
are measured against the final density matrix to determine the probability that the
system is in each state, using the following equation:

)|(|)(ρkktracekp 〉〈= , (19)

where p(k) is the probability that the final superposition is in state k described by
ket . 〉k|

11

3.0 SUMMARY OF KEY ACCOMPLISHMENTS
What follows is a bulleted list of the key accomplishments of this project:

• Optimized existing quantum computer simulator’s matrix multiplication
operations by taking advantage of particular structure of matrices.

• Reduced order of simulator operations per time step from O(23N) to
O(22N+g), where N is the number of qubits in the algorithm and g is the
number of qubits on which the gate operates.

• Reduced simulator memory overhead requirement from 2Nx2N to 2gx2g.
• Achieved a 99.5% performance improvement for a single-processor

simulation of 7-qubit Shor’s Algorithm with decoherence (from just under
two days to just over twelve minutes).

• Further enhanced simulator by distributing simulator matrix calculations
across a cluster of at most 22(N-g) nodes.

• Achieved an 87.5% performance improvement over the previously
optimized simulation of the 7-qubit Shor’s Algorithm with decoherence,
using a cluster of 16 nodes (reduced simulation time from just over twelve
minutes to a minute and a half).

• Achieved an overall performance improvement of 99.94% from the initial
simulator implementation to the optimized and distributed simulation of the
7-qubit Shor’s Algorithm with decoherence.

• Enhanced simulator to evaluate a step-by-step comparison of the ideal
quantum algorithm execution to the actual (decoherence and/or error-
included) simulation, storing the density matrix difference after each gate
application.

• Evaluated Frobenius norm to quantify difference between two matrices
after each step.

• Augmented simulator graphical user interface to visualize heatmaps of
ideal vs. actual density matrices at each step in algorithm.

• Modeled three experimental ion trap quantum computer algorithms:
Deutsch-Jozsa, Grover, and semi-classical quantum Fourier Transform.

• Compared the simulator’s results in the absence of noise to the ideal ion
trap algorithm results, resulting in errors less than 0.002%.

• Compared the simulator’s results with gate noise to the experimental ion
trap results.

• Achieved overlapping fidelities between the simulator’s results and the
experimental results with 10% noise in the gate application times.

• Implemented an FPGA-based accelerator for quantum gate application.
• Achieved a 12.4x performance improvement over the single processor

implementation for a 3-qubit test case.
• Achieved a 26.9x performance improvement over the single processor

implementation for a 5-qubit test case.
• Compared precision loss stemming from using a single precision floating

point data type for computations rather than the double precision data type
used on the general purpose processors.

12

4.0 DETAILS OF KEY ACCOMPLISHMENTS

4.1 Performance Enhancement via Matrix Multiplication Optimizations
The objective of these enhancements was to optimize the matrix multiplications
in the simulator to improve its performance. A quantum computer simulator that
demonstrates interactive performance for small systems and feasible compute
times for larger quantum systems would provide a powerful test-bed for
exercising and quantifying the performance of quantum algorithms.

4.1.1 Test Cases
Three different algorithms (utilizing 3, 5, and 7 qubits, respectively) were used to
evaluate the original performance of the simulator. The 3-qubit algorithm, shown
in Figure 8, is comprised of three Conditional Not (CNot) gates.

Figure 8: 3 Qubit Test Case

The 5-qubit algorithm, shown in Figure 9, is comprised of six gates; three of
which are 2-qubit CNot gates, and the remaining three of which are 3-qubit
Conditional-Conditional Not gates (CCNot).

Figure 9: 5 Qubit Test Case

The 7-qubit algorithm used for evaluating Quantum eXpress is Shor’s Algorithm
for the prime factorization of numbers [1]. Operating on 7 qubits, Shor’s
Algorithm factors the number 15 into the prime numbers 3 and 5. This algorithm
is shown in Figure 10.

13

Figure 10: 7 Qubit Test Case (Shor’s Algorithm)

As can be seen in Figure 10, a smaller algorithm is incorporated into the primary
algorithm (“shor-fourier-inverse-3”). This is a 3-qubit inverse Fourier Transform,
which is shown in Figure 11. In total, the 7-qubit algorithm is comprised of 21
gates of various type.

Figure 11: 3 Qubit Inverse Fourier Transform for 7 Qubit Test Case

14

The results of evaluating these three algorithms with the original implementation
of QX can be seen in Table 1. Clearly, the no decoherence implementation
exhibits run times that are acceptable for interactive use. The original
decoherence simulation times are extremely inefficient, however. Adding a few
more qubits would quickly increase run times to weeks or months.

Table 1: Simulation Times Before Optimization
 No Decoherence Original Decoherence

3 Qubit 2.1s 5.2s
5 Qubit 4.6s 720.6s (12m 0.6s)
7 Qubit 88s (1m 28s) 155191.4s (43h 6m 31s)

4.1.2 Multiplication Optimizations
The core computation performed by the simulator is matrix multiplication. It is
costly for two reasons. First, the matrices are large. The density matrix
representation of the quantum state requires matrices with the number of rows
and columns exponential in the number of qubits being simulated. Thus, to
simulate a system with N qubits requires a density matrix with 2N rows and 2N
columns. For example, for N=8, a 256x256 matrix is required, resulting in 65,536
elements. For N=16, a 65,536x65,536 matrix is required, resulting in over 4.2
billion elements in the matrix. Second, general matrix multiplication is relatively
expensive. In order to simulate algorithms with large numbers of qubits,
alternative matrix multiplication algorithms are required.

The Strassen Algorithm replaces expensive matrix multiplication operations with
less-expensive addition and subtraction operations [8]. Therefore, the Strassen
Algorithm with Winograd’s Variant was implemented in QX to improve the speed
of matrix multiplication over the traditional row-column multiplication algorithm.
However, due to the additional memory overhead of Strassen’s Algorithm,
significant performance improvements were not achieved. In order to realize
significant improvements it was necessary to exploit the unique structure of the
matrices used in the Quantum eXpress simulations.

In this section we develop an algorithm to perform the single time step update
represented by (11). For clarity we will focus on the core, single time step
computation that serves as the basis for simulating the application of a gate.
Improvements in this computation will lead to proportional improvements in the
overall system performance. Although we concentrate on run time, our solution
will also provide an improvement in storage requirements.

Our first block of pseudo-code, found in Figure 12, is for the case where there is
no decoherence. This is represented by (11), (14) and (15), where the
decoherence terms are all zero. A straightforward implementation based on the
inner product method for matrix multiplication is given in the first code fragment.

15

ApplyGate1Step(Rho, H, dT)
Inputs:
Rho a square matrix of side QB representing the state of the quantum

system being simulated. The result is returned as an update to
Rho

H the same size as Rho, is the Hamiltonian operator for the gate
being applied

dT the time step size
LocalVariables:
f1 = dT and f2 = (dT^2)/2
QB the number of rows (columns) in the matrix Rho
Ts1, Ts2 an array the same size as Rho, which holds the first (second)

order term of the Taylor series. They are allocated once and
reused on subsequent calls

// Compute the first order term (H*Rho - Rho*H)
 for (j = 0; j++; j < QB)
 for (k = 0; k++; k < QB)
 Ts1[j,k] = 0
 for (l = 0; l++; l < QB)
 Ts1[j,k] += H[j,l]*Rho[l,k]
 Ts1[j,k] -= Rho[j,l]*H[l,k]
// Compute the second order term (H*T1 - T1*H)
 for (j = 0; j++; j < QB)
 for (k = 0; k++; k < QB)
 Ts2[j,k] = 0
 for (l = 0; l++; l < QB)
 Ts2[j,k] += H[j,l]*Ts1[l,k]
 Ts2[j,k] -= T1[j,l]*H[l,k]
// Update Rho according to Rho + f1*T1 + f2*T2
 for (j = 0; j++; j < QB)
 for (k = 0; k++; k < QB)
 Rho[j,k] += f1*Ts1[j,k] + f2*Ts2[j,k]

Figure 12: Non-Optimized, No Decoherence Matrix Simulation

This code requires O(23N) arithmetic operations per time step and two full
temporary matrices the size of the density matrix ρ (Rho). Without more
information the above code would be acceptable.

We do know, however, that although ρ is, in general, full, H will be sparse. In
fact, H will have a very special structure. To better understand the structure we
need to consider the relationship between an index (row or column) and the
basis states of the individual qubits. The basis vectors (indices) for a system are
formed by interpreting the catenation of the basis vectors for the individual qubits
as a binary number where bit position i corresponds to the value of the basis
vector for qubit i. For example, 1002 refers to the state where qubit0 = 0, qubit1 =
0, and qubit2 = 1.

To see this, consider the construction of H, the Hamiltonian for the system, in
terms of G, the Hamiltonian of the gate. This relationship is best understood by
looking at a specific case. Consider a two-qubit gate. The most general case of

16

a Hamiltonian, G, defining a gate’s effect on two qubits, is a full 4x4 matrix shown
in (20).

G =

a b c d
e f g h
i j k l
m n o p

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. (20)

Now consider the structure of the system Hamiltonian H(G) resulting from the
application of the gate G. Since the system has more qubits than the gate
operates on we must choose which qubits to transform and which one to leave
untouched. For the purpose of this example we will apply the gate to qubit0 and
qubit1 leaving qubit2 untransformed. This produces the system Hamiltonian:

()

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

ponm
lkji
hgfe
dcba

ponm
lkji
hgfe
dcba

GH

0

0

. (21)

The upper left block of H(G) corresponds to the transformation on states
corresponding to qubit2 being in the 0 basis state while the lower right block
corresponds to qubit2 in the 1 basis state. Note that if there were additional
higher-order system qubits, the matrix H(G) would still be block diagonal but it
would have a number of blocks exponential in the number of qubits not being
transformed. Whenever a gate is operating on the low order qubits of a system
state we will say that the circuit and the corresponding system Hamiltonian is in
standard form. Our next code fragment simulates the application of a gate in
standard form for a single time step:

ApplyGate1Step(Rho, H, dT)
...
LocalVariables:
...
GB the number of rows (columns) in the basic gate Hamiltonian G
// The outer 2 loops iterate over the blocks of the block
// diagonal matrix H(G). Note since all blocks are the
// same we only need the smaller matrix G.
for (jblk = 0; jblk++GB; kblk < QB}
 for (kblk = 0; kblk++GB; bklk < QB}
// The next three loops are the standard matrix multiply
// on blocks of Rho by G to compute T1 <- (G*Rho - Rho*G)

17

 for (j = 0; j++; j < GB)
 for (k = 0; k++; k < GB)
 T1 = 0
 for (l = 0; l++; l < GS)
 T1 += G[j,l]*Rho[l+jblk,k+kblk]
 T1 -= Rho[j+jblk,l+kblk]*G[l,k]
 Ts1[j+jblk,k+kblk] = f1*T1
// We use the same computation for the second order term
// noting that the block updates are independent
 for (j = 0; j++; j < GB)
 for (k = 0; k++; k < GB)
 T2 = 0
 for (l = 0; l++; l < GS)
 T2 += G[j,l]*Ts1[l+jblk,k+kblk]
 T2 -= T1[j+jblk,l+kblk]*G[l,k]
 Ts2[j+jblk,k+kblk] = f2*T2
// Finally, we combine the terms of the series, again
// the result blocks are independent.
 for (j = 0; j++; j < GB)
 for (k = 0; k++; k < GB)
 Rho[j+jblk, k+kblk] += Ts1[j+jblk, k+kblk]
 Rho[j+jblk, k+kblk] -= Ts2[j+jblk, k+kblk]

Figure 13: Standard No Decoherence Matrix Simulation

The single large 2Nx2N matrix multiplication is replaced by N-g small 2gx2g matrix
multiplications. To see the impact this change has on performance, notice that
the outer two loops cause the update section to be executed 22(N-g) times while
the update section performs O(23g) operations. This leads to a computation
requiring O(22N+g). Since g tends to be small (1, 2, or 3 usually) while N, which
depends on the system, is the total number of qubits, we have 2N+g<<3N. Thus,
the new code offers a significant improvement over the previous version. Also,
with the optimized multiplication, the large 2Nx2N unitary operator never needs to
be constructed, one 2gx2g block is sufficient. This process is illustrated in Figure
14. The gate Hamiltonian multiplies each of the individual blocks of the density
matrix.

18

* ≡

Density Matrix Hamiltonian

2Nx2N2Nx2N

* ≡

Density Matrix Hamiltonian

2Nx2N2Nx2N

*

*

*

Matrix Product

2gx2g 2gx2g

**

**

**

Matrix Product

2gx2g 2gx2g

Figure 14: Canonical Density Matrix Multiplication, N = 4, g = 2

Unfortunately not all gates appear in standard position. (22) shows the same
system gate as (21) but applied to different qubits, resulting in nonstandard form.
The example on the left is being applied to qubits 0 and 2 while the one on the
right is being applied to qubits 1 and 2.

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

po
po

lk
lk

nm
nm

ji
ji

hg
hg

dc
dc

fe
fe

ba
ba

H

po
po

po
lk

nm
nm

nm
ji

hg
dc

hg
dc

fe
ba

fe
ba

H

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

2,12,0 (22)

By inverting the transformations that produced these Hamiltonians from the
standard gate definition, we can reduce the general problem to the specific
problem of simulating a gate in standard position, producing the simplified block
diagonal matrix multiplication implemented in Figure 13. The desired
transformation mapping the gate into standard position can be thought of as a
simple renaming of the system qubits. This renaming leads to a permutation of
the rows and columns of the density matrix.

19

Code to generate the permutation of the row and column indices required to
bring the algorithm and density matrix into standard form is presented in Figure
15. Recall that each index represents a computational basis state, one in which
each of the qubits has a specific value, either 0 or 1. The index corresponding to
a computational basis state is the binary number resulting from concatenating the
values of the system's qubits in a fixed order, which we will call the input order.
Standard form requires that the bits being acted upon by a gate be in the lowest
order positions. Thus, for each index, we can compute its standard equivalent by
permuting the system bits to bring the gate bits into the low order positions. The
following pseudo-code achieves the required transformation of the indices. It
produces a permutation which, for each standard position, i, identifies the
corresponding index in input order. All that remains is to permute the rows and
columns of the density matrix, then using this result, compute the Taylor series
for n time steps, and then permute the rows and columns of the density matrix
back to input order using the inverse of the permutation.

IndexPermutation(N, g, GateIn)
N The number of qubits in the system
g The number of qubits input to the gate
GateIn A list of the g qubits the gate will be applied to
Standard The permutation which, when applied to the rows and columns

of the density matrix, will bring it into standard form.
Note that P is a permutation of the integers 0..2^N - 1

// This is simply achieved. For each index in P from
// 0 .. 2^N we permute its bits to move the bits in
// positions identified in GateIn to the low order
// positions. The remaining bits are slid to the high
// order end to squeeze out the holes left by them. The
// result is an index permuted to correspond to moving the
// gate into standard form.
 spaces = sort(GateIn, 'decreasing')
 for (i = 0; i++; i < N)
 newi = i
 for (k = 0; k++; k < N)
 bit = getbits(i, k)
 setbits(newi, k, getbits(i, k))
 for (k = 1; k++; k < N && spaces[k] >= N)
 frag = getbits(i, (spaces[k]..spaces[k-1])
 setbits(newi, (spaces[k]+k..spaces[k-1]+k), frag)
 frag = getbits(i, (spaces[k]..spaces[k-1])
 setbits(newi, (spaces[k]+k..spaces[k-1]+k), frag)
 Standard[i] = newi

Figure 15: Density Matrix Permutation Algorithm

To visualize the result of the permutation, Figure 16 shows the beginning portion
of a 7 qubit Shor’s algorithm. Figure 17 shows the same algorithm if the density
matrix is permuted before each gate operation, resulting in the appearance that
the gates are all in standard form.

20

Figure 16: First Portion of 7 Qubit Shor’s Algorithm

2

3

4

5

6

7

1

1

3

4

5

6

7

2

1

2

4

5

6

7

3

1

3

5

7

2

6

4

1

2

3

5

7

4

6

1

2

4

5

7

3

6

1

2

4

6

7

3

5

2

3

4

5

6

7

1

1

3

4

5

6

7

2

1

2

4

5

6

7

3

1

3

5

7

2

6

4

1

2

3

5

7

4

6

1

2

4

5

7

3

6

1

2

4

6

7

3

5

Figure 17: First Portion of 7 Qubit Shor’s Algorithm with Permutation

Finally we must include the effects of decoherence. We address phase damping
decoherence in this effort. To account for phase damping we must evaluate:

∑
=

−−
N

j
j

H
jj

H
j

H
jj VXVXVVXVV

1

)2((23)

as part of computing the terms Ωρ and of the Taylor series. First we will
look at the form of V

Ω2ρ
j. Recall that for a single qubit the phase damping

decoherence operator is expressed as:

V =
0 0
0 b
⎡

⎣
⎢

⎤

⎦
⎥ = b

0 0
0 1
⎡

⎣
⎢

⎤

⎦
⎥ = bV̂ . (24)

Again, using the example of a 3-qubit system, if we expand the single qubit
definition we get the following:

21

bV̂0 = b

0
1

0 0
1

0
0 1

0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

bV̂1 = b

0
0

1 0
1

0
0 0

1
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

bV̂2 = b

0
0

0 0
0

1
0 1

1
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

.

(25)

As a consequence of the structure of the matrices it can be shown that:

ViVi
† = bb†V̂iV̂i

† = BV̂i . (26)

Equation (26) allows us to simplify (23) yielding:

∑
=

−−
N

j
jjjj VXXVVXVB

1

)ˆˆˆˆ2(. (27)

Since the are diagonal binary matrices they possess properties that allow
further algebraic simplification of (27) before it is included in the simulator code.
The product

V̂i

V̂X has rows of 0 where the corresponding diagonal element of V is
0, otherwise it has the corresponding row of X in rows where the diagonal
element of V̂ is 1, thus acting like a row selector. Similarly, multiplication from
the right selects columns.

At this point it would be useful to review an alternative form of the matrix product,

, called the Hadamard product. ⊗

(A⊗ B)i, j = ai, j × bi, j (28)

22

Notice that ⊗ is commutative and the matrix , a matrix of all 1’s, serves as an
identity. Thus we can further rewrite (27):

1̂

.1̂ˆ

ˆ

)2(

)2(

)ˆ1̂1̂ˆˆ1̂1̂ˆ2(

1

1

1

jj

N

j

H
jj

H
jj

N

j

H
jj

H
jj

N

j
jjjj

VSwhere

WX

SSSSBX

SXXSSXSB

VXXVVXVB

=

⊗=

−−⊗⊗=

⊗−⊗−⊗⊗=

⊗−⊗−⊗⊗

∑

∑

∑

=

=

=

(29)

Notice that W only depends on the number of qubits. The following code
fragment includes phase decoherence effects based on (29).

ˆ

W a matrix which is a precomputed function of user input
...
// The next three loops are the standard matrix multiply
// on blocks of Rho by G to compute T1 <- (G*Rho - Rho*G)
 for (j = 0; j++; j < GB)
 for (k = 0; k++; k < GB)
 T1 = 0
 for (l = 0; l++; l < GS)

 T1 += G[j,l]*Rho[l+jblk,k+kblk]
 T1 -= Rho[j+jblk,l+kblk]*G[l,k]
 T1 += Rho[j+jblk,l+kblk]*W[j+jblk,l+kblk]
 Ts1[j+jblk,k+kblk] = f1*T1
// We use the same computation for the second order term
// noting that the block updates are independent
 for (j = 0; j++; j < GB)
 for (k = 0; k++; k < GB)
 T2 = 0
 for (l = 0; l++; l < GS)
 T2 += G[j,l]*Ts1[l+jblk,k+kblk]
 T2 -= T1[j+jblk,l+kblk]*G[l,k]
 T2 += Ts1[j+jblk,l+kblk]*W[j+jblk,l+kblk]
 Ts2[j+jblk,k+kblk] = f2*T

Figure 18: Phase Decoherence Matrix Simulation Algorithm

Finally, we need to compute . Ŵ

23

).)(1̂1̂)()(2(

)1̂1̂2(

)2(

)2(

)2(ˆ

111

111

111

111

1

∑∑∑

∑∑∑

∑∑∑

∑∑∑

∑

===

===

===

===

=

⊗−⊗−=

⊗−⊗−=

−−=

−−⊗=

−−⊗⊗=

N

j

H
j

N

j
j

N

j
j

N

j

H
j

N

j
j

N

j
j

N

j

H
j

N

j
j

N

j
j

N

j

H
j

N

j
j

N

j

H
jj

N

j

H
jj

H
jj

VVVB

VVVB

SSVB

SSSSB

SSSSBXW

 (30)

Going back to the definition of V we see that j (Vj)i ,i = Bits(i) j , the bit of the

binary representation of . Thus the i component of the first sum is the number
of ones in the binary representation of

j th

i th

j .

4.1.3 Optimization Results
These enhancements have resulted in substantial performance improvements in
the execution of Quantum eXpress. Table 2 shows the pre-optimization
simulation times accompanied by the post-optimization simulation times.

Table 2: Post-Optimization Simulation Times
 No Decoherence Original Decoherence Optimized Decoherence
3 Qubit 2.1s 5.2s 1.01s
5 Qubit 4.6s 720.6s (12m 0.6s) 20.77s
7 Qubit 88s (1m 28s) 155191.4s (43h 6m 31s) 758s (12m 38s)

We were able to take advantage of the unique structure of the system
Hamiltonian matrices to reorganize their bits to make the matrix appear block
diagonal. By permuting the same bits of the density matrix, we produced the
equivalent matrix multiplication. We were then able to replace the single large
matrix multiplication with many smaller multiplications, substantially reducing the
number of calculations and memory overhead required.

Table 3 provides the percent improvement from the original decoherence to the
optimized decoherence, and Figure 19 plots those results.

Table 3: Decoherence Improvement from Original Implementation
 Improvement (%)

3 Qubit 80.58%
5 Qubit 97.12%
7 Qubit 99.51%

24

80.00
82.00
84.00
86.00
88.00
90.00
92.00
94.00
96.00
98.00

100.00

3 5 7
Qubits

D
ec

oh
er

en
ce

 S
pe

ed
up

 (%
)

Figure 19: Simulation Performance Improvement

4.2 Port to High Performance Computing Cluster
The new algorithm for gate application significantly improved the performance of
Quantum eXpress. Beyond those optimizations, porting QX to a high
performance-computing environment could also significantly reduce the amount
of time required to execute a simulation. It could also increase the number of
qubits able to be simulated, enabling a more thorough investigation of error
correction schemes. This would allow researchers to better quantify the amount
of error correction required to develop a large-scale quantum computer with high
fidelity. A byproduct of the optimized implementation described above is an
improved locality of reference resulting from smaller matrix multiplications that
naturally lends itself to a distributed implementation. Each of the small 2gx2g
matrix multiplications in the optimized simulation is independent. Thus, all of
them can occur in parallel. Therefore, in theory, doubling the number of CPU’s in
the execution could reduce the computational time by half (neglecting the
processing overhead on the head node and the cost of distributing the data
across the network).

Quantum eXpress is divided into two components—a graphical user interface
(GUI) for designing quantum algorithms and specifying initial states, and a back-
end simulator engine responsible for evaluating the algorithms. The GUI can
invoke a local instance of the simulator engine or it can connect to a remote
server via the Simple Object Access Protocol (SOAP) to execute the simulator
engine running on a shared server, as shown in Figure 20.

25

Local Server

Simulator
Engine

Internet
(SOAP)

or Simulator
Engine

Remote Server
Figure 20: Quantum eXpress Connected to Either a Local or Remote Server

This division of labor allows us to concentrate our performance enhancement
efforts on the back end simulator while the GUI remains unchanged on a
researcher’s desktop. The parallelized version is embodied in an alternative
back end that executes on a cluster. The head node of the cluster is responsible
for managing the density matrix, initializing the Hamiltonian, and dividing and
distributing the density matrix and Hamiltonian to the cluster nodes to execute
the parallel evaluations.

The distributed implementation utilizes Java’s Remote Method Invocation (RMI)
[9] capabilities to communicate with and pass data to the various nodes. A Web
server is also required, to provide the nodes with access to the required QX code
to perform the simulations. In our implementation, the Web server runs on the
head node. It is started using the script shown in Figure 21.

#!/bin/tcsh

echo Starting webserver on port 8080
java -jar lib/tools.jar -dir . -verbose -port 8080

Figure 21: Script to Start Web Server on Head Node (startWebServer.sh)

The individual cluster nodes each connect with the Web server via RMI to
download the simulator code. Each node in the cluster thus must be made
aware of the head node’s Web server URL, and is started with the script shown
in Figure 22.

#!/bin/tcsh

set properties
Web URL

26

setenv WebURL http://master.afrl.mil:8080/

RMI URL
setenv RMIport 1099
setenv RMIURL rmi://hostname0.afrl.mil:$RMIport/qxNode

start RMI registry
echo Starting RMI registry on port $RMIport
rmiregistry $RMIport &
sleep 2

start Node
echo Starting QX node with RMI URL $RMIURL
java -classpath .:./lib/quantumexpress.jar::./lib/jdom.jar
-Djava.rmi.server.codebase=$WebURL -Djava.security.policy=
security/policy.all com.quantum.engine.QuantumClusterServer $RMIURL

Figure 22: Script to Start a Cluster Node (startNode.sh)

To know how to communicate with each of the cluster nodes, an XML
configuration file, accessible by the head node, lists all of the available nodes.
Figure 23 shows an example configuration file.

<nodes>
 <distributed> true </distributed>
 <node> rmi://hostname0.afrl.mil:1099/qxNode </node>
 <node> rmi://hostname1.afrl.mil:1099/qxNode </node>
 <node> rmi://hostname2.afrl.mil:1099/qxNode </node>
 <node> rmi://hostname3.afrl.mil:1099/qxNode </node>
 ...
</nodes>

Figure 23: XML Configuration for Head Node to Find Cluster Nodes (nodes.xml)

Figure 24 shows how the cluster nodes and Web server interact, and how the QX
client runs on the head node to distribute work to each of the cluster nodes.

27

Quantum eXpress clientQuantum eXpress client

Quantum eXpress clientQuantum eXpress client

nodes.xml
Node URLs:

1) rmi://hostname0:RMI port/qxNode0
2) rmi://hostname1:RMI port/qxNode1
3) …
4)
…

Each node:
• Has a unique name: qxNodeN
• Instantiates an RMI Registry

rmi:/ /hostnameN:RMI port/qxNodeN
• Accesses the Web server for code

http:/ /hostname:Web port

…
qxNode0qxNode0

qxNode1qxNode1

qxNode2qxNode2

qxNodeNqxNodeN

Disparate Cluster Nodes

Web Server
http://hostname:Web port

Web server provides nodes with
access to QX code

Individual nodes execute
QX simulations

QX client manages density
matrix and distributes work

across nodes

QX clients request info from the RMI registries
on how to communicate with each node, and

then distributes work to them

RMI Registries
rmi://hostnameN:RMI port

Figure 24: Cluster Node Communication

4.2.1 Density Matrix Distribution
Once all of the nodes are started and a simulation has begun, the head node first
determines the Hamiltonian that must be used for each gate. It then determines
how many nodes in the cluster to use for the parallel simulation. The maximum
number of nodes that can be used is dependent on the number of qubits N in the
density matrix, and the number of qubits g being operated upon by the gate in
question. The maximum number of usable nodes per gate is the number of 2gx2g
matrices that the full 2Nx2N density matrix can be divided into:

)(22 gN− . (31)

Clearly, the maximum number of usable nodes is a power of 2. Assuming each
node in the cluster is equivalent, there is no benefit to dividing the density matrix
into uneven portions, so the head node divides the density matrix by powers of 2.
First, the density matrix is divided into as many columns as possible, as long as
the number of columns does not exceed the number of available nodes and the
minimum column width is 2g. An example of repeatedly dividing the density
matrix into columns is shown in Figure 25.

28

1 1 21 2 1 2 3 41 2 3 4

Figure 25: Density Matrix Column Division Example, N = 4, g = 2

If more nodes are available, the density matrix is further divided into rows. As
expected, the minimum row width is 2g. An example of further dividing the
density matrix into rows is shown in Figure 26.

2 3 41 4

5 6 7 85 6 7 8

9 10 11 129 10 11 12

13 14 15 1613 14 15 16

1 2 3 41 2 3 4

5 6 7 8

1 2 3 4

5 6 7 85 6 7 8

1 2 3 41 2 3 4 1 2 3 41 2 3 4

Figure 26: Density Matrix Row Division Example, N = 4, g = 2

Once the head node divides the density matrix, it communicates with each node
in the cluster to distribute a portion of the density matrix and the Hamiltonian.
Each cluster node then executes the simulation and passes the resulting density
matrix back to the head node.

4.2.2 Distributed Simulation
We use the code for applying a gate in canonical position as the basis for
partitioning the problem for distributed implementation. Notice that the outer two
loops iterate over a set of blocks of ρ performing matrix multiplications. The
multiplications have no data dependencies thus they can be treated as
independent threads. Although we did not explicitly treat the multiple evaluation
of the Taylor series expansion to simulate multiple time steps, it should be clear
that the independence of the data in the threads could be used to bring that
iteration inside the thread.

forall (jblk = 0; jblk+=GB; jblk < QB)
 forall (kblk = 0; kblk+=GB; kblk < QB)
 Thread(Rho, G, W, jblk, kblk, GB)
// The next three loops are the standard matrix multiply
// on blocks of Rho by G to compute T1 <- (G*Rho - Rho*G)
 for (j = 0; j++; j < GB)
 for (k = 0; k++; k < GB)
 T1 = 0

29

 for (l = 0; l++; l < GS)
 T1 += G[j,l]*Rho[l+jblk,k+kblk]
 T1 -= Rho[j+jblk,l+kblk]*G[l,k]
 T1 += Rho[j+jblk,l+kblk]*W[j+jblk,l+kblk]
 Ts1[j+jblk,k+kblk] = f1*T1
// We use the same computation for the second order term
// noting that the block updates are independent
 for (j = 0; j++; j < GB)
 for (k = 0; k++; k < GB)
 T2 = 0
 for (l = 0; l++; l < GS)
 T2 += G[j,l]*Ts1[l+jblk,k+kblk]
 T2 -= T1[j+jblk,l+kblk]*G[l,k]
 T2 += Ts1[j+jblk,l+kblk]*W[j+jblk,l+kblk]
 Ts2[j+jblk,k+kblk] = f2*T

Figure 27: Distributed Simulation Algorithm

As expected, the distributed simulation also significantly improved the
performance of the simulator. Table 4 shows the results of distributing the three
algorithm simulations across a cluster, with different numbers of nodes available.
The number of nodes used at each step are shown, along with the resulting
simulation times. The optimal number of nodes used and simulation times are in
bold.

Table 4: Distributed Simulation Times

 3 Qubits 5 Qubits 7 Qubits
Nodes

Available
Time (sec) Nodes

Used
Time (sec) Nodes

Used
Time (sec) Nodes

Used
0 1.01 0 20.77 0 758 0
1 1.13 1 21.43 1 699 1
2 0.95 2 11.36 2 364 2
4 0.92 4 6.46 4 199 4
8 0.97 4 4.16 8 124 8
16 0.98 4 3.36 16 95 16

Figure 28 shows a plot of the distributed simulation times from Table 4.

30

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16
nodes

tim
e

(s
ec

)

3 Qubits
5 Qubits
7 Qubits

Figure 28: Distributed Simulation Times vs. Number of Nodes

Table 5 shows how increasing the number of cluster nodes at each row in Table
4 improves the performance of the simulation as compared to the non-distributed
(zero nodes) simulation. If we assume the head node causes no overhead in the
simulation, and that there is no overhead due to distributing data across the
network to the cluster nodes, than we can calculate the best possible speed-up,
as is shown under the ‘ideal’ column in Table 5.

Table 5: Distributed Simulation Time Improvement Compared to Non-Distributed

Simulation

Nodes Ideal 3 Qubits 5 Qubits 7 Qubits
0 0.00% 0.00% 0.00% 0.00%
1 0.00% -11.88% -3.18% 7.78%
2 50.00% 5.94% 45.31% 51.98%
4 75.00% 8.91% 68.90% 73.75%
8 87.50% 3.96% 79.97% 83.64%
16 93.75% 2.97% 83.82% 87.47%

In comparing the ideal and actual speed-ups, we expect the actual results to be
slightly worse. This is due to overhead in both the computations performed on
the head node as well as the network time required for distributing the
components of the density matrix. For example, for the single node case the
ideal speed-up is zero, but we see that for the 3 qubit and 5 qubit examples the
actual speed-up is negative. This is expected because time is spent distributing
the density matrix to that node, but no speed-up is incurred using a single node
for the calculations. Similarly, since the 3 qubit example can use at most 4
nodes, we see the maximum speed-up occurs with 4 nodes. Adding more nodes
adds only additional processing overhead, reducing the performance
improvement.

31

An interesting result found in Table 5 is that for the single node example, the 7
qubit test case produces a positive speed-up. This is in contrast to the zero-
percent ideal improvement, and negative actual speed-up anticipated. Similarly,
for the experiment with two nodes we again see that the 7 qubit test case has a
slightly higher improvement than expected under ideal circumstances. Dozens of
experiments were run to verify that both of these results were indeed produced
by the optimized implementation of Quantum eXpress. Since they conflict with
expectations, further investigation is required to find a valid explanation.
Otherwise, the remaining results all met with our expectations, indicating that the
optimization was quite successful. A plot of the percent-improvements shown in
Table 5 can be found in Figure 29.

-20%

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14 16

nodes

sp
ee

d-
up

 (%
) 3 Qubits

5 Qubits
7 Qubits
Ideal

Figure 29: Distributed Simulation Improvements Compared to Non-Distributed

Implementation

Table 6 shows how the optimal simulation times from Table 4 compare to the
original implementation and the optimized simulation prior to distribution across
the cluster.

Table 6: Distributed Simulation Time Comparison
 Original

Decoherence
Optimized

Decoherence
Optimized & Distributed

Decoherence
3 Qubit 5.2s 1.01s 0.92s
5 Qubit 720.6s (12m 0.6s) 20.77s 3.36s
7 Qubit 155191.4s (43h 6m 31s) 758s (12m 38s) 95s (1m 35s)

Table 7 shows the percent improvement in simulation time from the original
implementation to the optimized simulation, and from the original implementation
to the optimized and distributed simulation.

32

Table 7: Decoherence Improvement from Original Implementation
 Optimized Improvement

(%)
Optimized & Distributed

Improvement (%)
3 Qubit 80.58% 82.31%
5 Qubit 97.12% 99.53%
7 Qubit 99.51% 99.94%

Figure 30 plots the data from Table 7, visualizing the performance improvement
experienced as a result of the distributed simulation.

80%
82%
84%
86%
88%
90%
92%
94%
96%
98%

100%

3 5 7
Qubits

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

Optimized
Improvement (%)

Optimized &
Distributed
Improvement (%)

Figure 30: Decoherence Simulation Performance Improvement from Original

Implementation

4.3 Ideal vs. Actual Density Matrix Comparisons
As described, QX is capable of simulating a quantum algorithm with both device
and decoherence errors simulated. It is also capable of simulating algorithms
under ideal (error-free) circumstances. During an algorithm's execution, it would
be valuable to simulate, in parallel, the algorithm's execution in both ideal and
actual circumstances and visualize the difference in the density matrix at each
step in the algorithm. This would enable researchers to see exactly how errors
affect the state of the quantum system and how they propagate over time.

The simulator was therefore updated to simulate and calculate the difference
between the ideal (no errors, no decoherence) density matrix and the actual
(error/decoherence-based) density matrix after each gate. If the simulator is
distributed over a cluster, the cluster is used for the actual simulation step and
then the ideal simulation step. These are not run in parallel because the actual
simulation step requires significantly more time, and therefore splitting the cluster
in half and simulating the two steps in parallel would be notably slower than
running the ideal step after the actual. The difference between the two matrices

33

is stored after each step, along with the Frobenius Norm of the difference
between those two matrices.

The Frobenius Norm is a generalized Euclidian norm that provides the ‘distance’
between two matrices [10]. The norm involves calculating the square root of the
sum of the absolute squares of a matrix element:

∑∑
= =

=
m

i

n

j
jiaF

1 1

2

, . (32)

4.3.1 Visualizing Matrix Differences
Quantum eXpress has also been enhanced to visualize the difference after each
gate, along with the Frobenius Norm. Heatmaps are used to visualize the cells in
the matrix that have non-zero elements, with different colors to represent various
numeric cutoffs. Cells are colored to indicate which have numerical values
greater than user-defined thresholds. This allows users to focus their attention
on the areas with higher error values that desirable, without needing to examine
the entire matrix. Three colors are used, and they have default values
associated. Those colors and default cut-offs are shown in Table 8. The color
cutoff values can be changed directly in the QX user interface.

Table 8: Ideal vs. Actual Heatmap Default Cutoffs
Color Default Cutoff

 Yellow 10-5

 Orange 10-3

 Red 10-1

Example visualizations are shown in Figure 31, for a system where N = 3.

Figure 31: Example Matrix Difference Visualizations, N = 3

The simulator does not calculate the ideal vs. actual density matrix differences by
default. The following parameter must be added to the states.xml configuration
file, and set to ‘true’ in order for the differences to be calculated.

34

 <compIdealVSActual> true </compIdealVSActual>

Figure 32: Ideal vs. Actual Matrix Calculation XML Parameter

4.4 Simulator Verification

4.4.1 Experimental Data Collection
The first step to verifying the simulator was to find relevant ion trap quantum
computer experiments. We identified about 40 research groups working in this
area. We found the groups through the Internet, textbooks, technical papers,
and Rome Labs contacts. We determined that the following groups had the most
advanced and relevant research programs: Innsbruck University, University of
Michigan, National Institute of Standards and Technology (NIST), Oxford
University, and Imperial College. Some of the other groups that we investigated
were the following: University of Aarhus, MIT, Georgia Tech, Johannes-
Gutenberg University, University of Washington, University of Illinois, Weizmann
Institute of Science, and Penn State University.

We reviewed all the publications of the more advanced and relevant groups, and
identified three candidate algorithms:

• Deutsch-Jozsa [11]
• Grover [12]
• Semi-classical quantum Fourier transform (QFT) [13]

After reviewing the published data, we identified three main project risks and
developed a plan to address them. The first risk was that we needed to obtain
complete and consistent experimental data. To avoid a critical dependency on a
single data source, we decided it would be best to attempt to obtain data for each
of the candidate algorithms. We planned to fill any gaps in the data that we
obtained by making educated approximations based on the data we could find
elsewhere in the literature. We also decided to use MATLAB to test the
algorithms that we found from the experimentalists to verify that they produced
the correct results in the absence of noise.

The second risk was that experimental decoherence data is difficult to obtain. It
was clear from our literature review that the experimentalists had only a
rudimentary understanding of decoherence sources in their experiments. We
deferred decoherence analysis to future research. We similarly deferred testing
any of the simulator’s capabilities that would not be required for the experiments
we modeled.

To model each algorithm, we required the following:

35

• the algorithm as implemented in the experiment
• gate Hamiltonians
• gate application times
• gate noise estimates
• decoherence data
• experimental results

Some of this data was available in the published papers. To obtain what wasn’t
readily available, we attended the “Workshop on Trapped Ion Quantum
Computing” at NIST, February 21 – 24, 2006. We met experimentalists from
each of the three relevant research groups and secured most of the data that we
needed.

We confirmed with the experimentalists that they do not have sufficient
understanding of decoherence in their experiments for us to model it. Their
experiments are focused on producing working algorithms, and little research on
analysis of noise sources had been done to this point. We also were unable to
obtain the Hamiltonians and gate noise estimates for Michigan’s Grover
algorithm experiments. We filled in the gaps using the other experiments and
other published papers from the Michigan group.

We tested each of the experimental algorithms in MATLAB and verified that they
produce the correct results in the absence of noise.

4.4.2 Modeling Experiments in the Simulator
To model the experimental algorithms, we had to translate the experimental data
into simulation designs and input the designs into Quantum eXpress as XML
files. In the remainder of this section, we describe the purpose of each algorithm
and its Quantum eXpress design.

Deutsch-Jozsa Algorithm
The purpose of the Deutsch-Jozsa algorithm as experimentally implemented is to
determine whether a binary function f with a binary input is constant or balanced
[11]. If it is constant, then it will produce either 0 or 1, regardless of its input. If it
is balanced, then it will either reproduce its input, or produce the complement of
its input (see Table 9).

Figure 33 shows the two-qubit Deutsch-Jozsa algorithm, which works as follows.
The primary qubit “a” is initialized to |0>, and the secondary qubit “w” is initialized
to |1>. Each qubit undergoes a rotation to put it in a superposition state. Then
there is a unitary operator that operates on both qubits and depends on which
case is being implemented (see Table 9). The effect of the operator is to perform
addition modulo 2 of the secondary qubit and the function evaluated with the
primary qubit. The qubits then undergo inverse rotations to prepare for
measurement. Finally, the probability that the primary qubit is in state |1> is

36

measured. If the function is constant, then the probability should be zero, and if
the function is balanced, then the probability should be unity.

Table 9: Constant and Balanced Functions
 Constant Functions Balanced Functions
 Case 1 Case 2 Case 3 Case 4

f(0) 0 1 0 1
f(1) 0 1 1 0

Figure 33: Deutsch-Jozsa Algorithm [11]

Figure 34: Experimental Implementation of the Deutsch-Jozsa Algorithm [11]

37

Note that the circuit is measuring a global property of the function f, which is the
strength of quantum algorithms. The advantage of the quantum algorithm over a
classical algorithm is that the quantum algorithm only requires a single evaluation
of the function, while classically two evaluations are required.

Figure 34 shows the experimental implementation of the algorithm for each case.
The circuit design for the simulator is the same as in the figure, except there is an
additional working qubit that is initialized to |0>, runs across the top of each
circuit, and is covered by the swap and phase (Φ) gates. The additional qubit is
necessary because the experiment takes the system out of the two-qubit
computational basis in the intermediate portion of the calculation, and the
simulator cannot handle that without a third qubit.

Figure 35: GUI View of the Deutsch-Jozsa Circuits

The rotation gates),(φθR are generated by applying the carrier Hamiltonian for a
time t :

,
0

0
2

C
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛Ω
=

−

φ

φ

i

i

e
e

H (33)

where Ω= /θt , and is a parameter that represents the strength of the
coupling between the ion and the laser that is used to manipulate it. Simulations

Ω

38

are independent of the value of Ω because the Hamiltonian and gate time
always appear in the combination , and tH C Ω cancels out of this product.

The swap and phase gates are defined as sequences of blue sideband rotations:

),0,
2

()
2

,())
2

,(phase 0,
2

(π πππππ ++++= RRRRR (34)

).,
2

(),
2

2(),
2

()(0swap000swap φπφφπφπφ +++ += RRRR (35)

Table 10: Deutsch-Jozsa Simulator Results with No Noise

Case 1 Case 2
State Probability State Probability
|000> 0.0 |000> 2.3034916202E-16
|001> 0.9999999366 |001> 0.9999970832
|010> 0.0 |010> 2.3591297278E-16
|011> 0.0 |011> 1.3025527459E-12
|100> 0.0 |100> 5.5554475174E-35
|101> 0.0 |101> 0.0
|110> 0.0 |110> 5.5554475196E-35
|111> 0.0 |111> 2.3034916202E-16

Case 3 Case 4

State Probability State Probability
|000> 5.6249534896E-18 |000> 1.1842324339E-17
|001> 1.0063527674E-13 |001> 1.0041509916E-13
|010> 5.6249534873E-18 |010> 1.1842324344E-17
|011> 0.9999993025 |011> 0.9999982879
|100> 0.0 |100> 0.0
|101> 0.0 |101> 0.0
|110> 0.0 |110> 0.0
|111> 0.0 |111> 0.0

Note that gates are applied in opposite order of these rotation matrix
multiplications, and

)).
2

(arccos(cot2
swap

πφ = (36)

),(φθ+R is generated by applying the blue sideband Hamiltonian for a time t :

39

,

00000000
00000000
00000000
00000002
00000000
0000000
0000000
00020000

2
B

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

Ω
=

−

−

φ

φ

φ

φ

i

i

i

i

e

e
e

e

H (37)

where Ω= /θt , and Ω is an arbitrary parameter that represents the strength of
the coupling between the ion and the laser that is used to manipulate it.

The simulator cannot handle Hamiltonians with parameters in their matrix
elements, so separate gates had to be constructed for each set of angle
arguments. Figure 35 shows what the circuits look like in the Quantum eXpress
GUI. For each case, the initial state is |001>.

Table 10 shows the simulator’s output for each case in the absence of gate noise
and decoherence. Note that the probability that the primary qubit (the second of
the three qubits) is in state |1> is very close to zero for cases 1 and 2, and very
close to unity for cases 3 and 4. That is the expected result. The deviations from
the ideal results are due to numerical approximations and round-off errors.

Grover Algorithm
The purpose of the Grover algorithm as experimentally implemented is to find a
target state in a search space of four states [12]. Figure 36 is a schematic
illustration of the general algorithm. The state is initialized to all zeros and then
undergoes a Hadamard transformation that puts it in an equal superposition of all
states (see Figure 36a). Then a portion of the circuit called the “oracle” marks
the target state by flipping the sign of its amplitude in the superposition (see
Figure 36b). Two additional Hadamard transformations with a phase gate
between them then amplify the amplitude of the target state (see Figure 36c).
Finally, the state is measured, and hopefully is the target state. To increase the
probability of success, steps (b) and (c) can be repeated many times. In the
special case of a 4-D search space, only one iteration is necessary to guarantee
success.

Figure 37 shows the two-qubit Grover algorithm as implemented in the
experiment. Both qubits are initialized to |0>, and then undergo rotations to put
them in superposition states. Then the rotations (in the dark boxes) swap the
target state (which is marked by choosing the appropriate angles α and β) and
the |11> state. Next, the controlled Z gate portion of the circuit flips the sign of
the |11> state. Then the rotations in the dark boxes swap the target state and

40

the |11> state again, and the portion of the circuit in dark gray amplifies the
amplitude of the target state so its magnitude is unity.

Figure 36: Grover Algorithm [12]

Figure 37: Experimental Implementation of the Grover Algorithm [12]

For Quantum eXpress, the circuit design is the same as in Figure 37. We
approximated),(φθR to be the same as for the Deutsch-Jozsa circuits, and

)
2

,
2

3()0,
2

3()
2

,
2

3()
2

(ππππππ
−=− RRRRZ . (38)

GMS is generated by applying the Mølmer-Sørensen Hamiltonian for a time t [14]:

41

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
Ω

=

0001
0010
0100
1000

2
MSH , (39)

where)2/(Ω= πt , and is an arbitrary parameter that represents the strength of
the coupling between the ion and the laser that is used to manipulate it.

Ω

Since the simulator cannot handle Hamiltonians with parameters in their matrix
elements, separate gates again had to be constructed for each set of angle
arguments. Figure 38 shows the circuit for the |00> target state in the Quantum
eXpress GUI. The circuits for the other target states have the same structure.
For each target state, the initial state is |00>.

Figure 38: GUI View of a Grover Circuit

Table 11: Grover Simulator Results with No Noise

 Probabilities
State |00> Target |01> Target |10> Target |11> Target
|00> 0.9999822 2.0313070E-15 2.0653559E-15 2.4729053E-15
|01> 5.0157198E-17 0.9999833 8.1217639E-17 2.4288804E-15
|10> 1.8642173E-16 1.5700924E-16 0.9999833 2.2963545E-15
|11> 1.8448619E-15 8.9420984E-17 1.0097672E-24 0.9999843

Table 11 shows the simulator’s output for each case in the absence of gate noise
and decoherence. Note that the probability that the target state is produced by
the circuit is very close to unity, as expected. The deviations from the ideal
results are due to numerical approximations and round-off errors.

42

Semi-classical QFT Algorithm
The purpose of the semi-classical QFT algorithm as experimentally implemented
is to perform the quantum analogue of the discrete Fourier transform on a three-
qubit state [13]. The general QFT on a computational basis state in an -
dimensional space is given by:

N

∑
−

=

⎯→⎯
1

0

/21 N

j

Nkji je
N

k π . (40)

The transformation rotates the basis state into a superposition of all the states in
the space, with the given complex amplitudes.

The semi-classical implementation loses relative phase information for the output
state but is experimentally much simpler to implement. The algorithm can
intuitively be thought of as measuring the frequency components (or the
periodicity) of the input state.

Figure 39: Experimental Implementation of the Semi-classical QFT Algorithm

Figure 39 shows the experimental implementation of the algorithm. The figure is
a modified version of that published in [13]. In order to complete the testing, we
had to work with our contact at NIST to translate their published algorithm into a
standard quantum computing circuit diagram. The modifications have no effect
on the operation of the algorithm, and the circuit design for the simulator is the
same as in Figure 39.

The algorithm works by performing a number of single-qubit rotations to put the
qubits into superposition states, and then performing a series of measurements
and controlled rotations to collapse qubit states to classical information and
selectively rotate the remaining qubits based on the measurement results.

In Figure 39 we used the short-hand notation

)0,()(θθ RRx = , (41)

)
2

,()(πθθ RRy = , (42)

43

where),(φθR is the same as in the Deutsch-Jozsa circuit. Dashed lines denote
classical information. Empty circles denote rotation if and only if the control qubit
is |0>, and solid circles denote rotation if and only if the control qubit is |1>. The
controlled rotations are performed using composite Hamiltonians expressed in
terms of the carrier Hamiltonian:

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

00
00

00
00

00
00C

empty

H
H , (43)

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=
C

solid

00
00

00
00

00
00

H
H . (44)

Figure 40: GUI View of the Semi-classical QFT Circuit

Again, the simulator cannot handle Hamiltonians with parameters in their matrix
elements, so separate gates had to be constructed for each set of angle
arguments. Figure 40 shows what the circuit looks like in the Quantum eXpress
GUI. There is only one circuit for this algorithm, but there are five different input
states, corresponding to states of period 1, 2, 3 (approximately), 4, and 8.

Table 12 shows the simulator’s output for each input state in the absence of gate
noise and decoherence. The input states are listed in the top row (in order of
periodicity), and the output state probabilities are listed in the columns. Note that
the circuit as performed in the experiment produces its output with the bits in
reverse order. We have accounted for this in the table.

The periodicity of an input state can be determined by counting how many non-
negligible output state probabilities there are for the input state. The non-
negligible probabilities should be roughly equal and sum to unity. For example,
the input state |011>+|111> has four non-negligible output probabilities, each
approximately 0.25, indicating that this input state has a period of four. That

44

means that when stepping through the eight three-qubit basis states (listed in the
first column of the table), every fourth state will be a component of the input
state.

Table 12: Semi-classical QFT Simulator Results with No Noise

State
Equal

Superposition
(Period 1)

|001>+|011>+
|101>+|111>
(Period 2)

|001>+|011>+
|100>+|110>
(Period 3)

|011>+|111>

(Period 4)

|111>

(Period 8)
|000> 0.9999968 0.4999984 0.4999984 0.2499992 0.1249996
|001> 4.6116731E-18 2.7014556E-18 0.0366115 2.7014555E-18 0.1249996
|010> 1.9794813E-17 3.9420938E-17 4.9908754E-18 0.2499992 0.1249996
|011> 7.9123796E-19 2.7014555E-18 0.2133877 2.7014554E-18 0.1249996
|100> 5.1449158E-17 0.4999984 5.5992798E-17 0.2499992 0.1249996
|101> 7.9123804E-19 2.7014556E-18 0.2133877 2.7014555E-18 0.1249996
|110> 1.9794814E-17 3.9420938E-17 4.9908760E-18 0.2499992 0.1249996
|111> 4.6116729E-18 2.7014554E-18 0.0366115 2.7014554E-18 0.1249996

Note that there is no true period-three state in an eight-dimensional space, so the
results for that input state are approximate. That is why it has three large output
probabilities and two small ones. The other deviations from perfection are due to
numerical approximations and round-off errors.

4.4.3 Results Analysis
Comparison with Ideal Results
We compared the simulation results in the absence of gate noise and
decoherence with the ideal results for all cases of each algorithm. By “ideal
results,” we mean the theoretical results of the algorithm, which is what would be
obtained in the absence of noise, decoherence, experimental error, etc. For
example, an ideal implementation of the Grover algorithm would find the marked
state (i.e. produce it as the output of the algorithm) 100% of the time.

Table 13: Simulation Maximum Absolute Probability Error with No Noise (%)
Case Deutsch-Jozsa Grover Semi-classical QFT

1 0.000006 0.002 0.0003
2 0.0003 0.002 0.0002
3 0.00007 0.002 0.0002
4 0.0002 0.002 0.00008
5 0.00004

Based on the approximations that Quantum eXpress makes, we expected that
the simulator results should match the ideal results with less than 0.01% absolute
probability error. Table 13 shows the maximum absolute probability error for all
states for each case of each algorithm. All the errors are well below the
expected threshold. The maximum of all of the errors is 0.002%, for the Grover
algorithm. This indicates that in the absence of gate noise and decoherence,
Quantum eXpress accurately models the ion trap quantum computer algorithms
that we selected.

45

Comparison with Experimental Results
To prepare for comparison with experimental results, we simulated each case of
each algorithm with each gate noise level varying from 0% to 20% in increments
of 1% simultaneously. The noise percentage defines the standard deviation of a
Gaussian distribution of gate application times in terms of the target time. We
ran each simulation 450 times to get a statistical distribution of results.

To control the simulations, we wrote MATLAB code to perform the following
tasks:

• update the XML files for the desired noise level
• run the simulator
• extract the probabilities of the output states
• compare the results to the ideal cases and the experiments

We made two comparisons with the experimental results. First we compared the
fidelities of the experiments with the fidelities of the simulations. For this
comparison, we used gate noise levels of 2% for the Deutsch-Jozsa and Grover
algorithms, and 1% for the semi-classical QFT. These numbers are based on
estimates we received from the experimentalists. By “fidelity,” for the Deutsch-
Jozsa and Grover algorithms we mean the probability that the algorithm
produced the correct result (e.g., did the Deutsch-Jozsa algorithm correctly
determine whether the function was constant or balanced). For the semi-
classical QFT, we used the squared statistical overlap (SSO) metric that the
experimentalists used [13]:

2
7

0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=j
jj emγ , (45)

Table 14: Experimental and Simulation Fidelities (%)

Deutsch-Jozsa Grover Semi-classical QFT Case
Exp QX Exp QX Exp QX

1 98.1(6) 99.947(3) 64(2) 98.21(7) 87(1) 99.828(5)
2 91.3(6) 99.75(1) 62(2) 98.20(7) 88(1) 99.867(4)
3 97.5(4) 99.877(5) 49(2) 98.18(7) 88(1) 99.867(4)
4 97.5(2) 99.881(4) 65(2) 98.35(6) 96(1) 99.919(3)
5 99(1) 99.940(3)

where and are the measured and expected probabilities of basis state jm je j ,
respectively. The SSO is a measure of the similarity of two states in the Hilbert
space and varies from 0 to 1.

Table 14 shows the experimental and simulation fidelities. The numbers in
parentheses are the one-standard-deviation uncertainties in the final digits. The
simulations generally have higher fidelities than the experiments. This was

46

expected because we did not model decoherence or systematic errors in state
preparation or measurement. The experimental fidelities are lowest for the
Grover algorithm (especially the third case), which apparently is the most difficult
algorithm to implement. The fidelity of the semi-classical QFT experiment for the
period-eight state is particularly high, probably because the initialization of this
state is simple.

For the second comparison with experiment, we determined the minimum gate
noises that were necessary for the experimental and simulation fidelities to be
equivalent (see Table 15). We considered two fidelities to be equivalent if their
one-standard-deviation ranges overlapped. We determined the required noise
independently for each case of each algorithm. These increased gate noises are
our attempt to model the additional experimental error sources in the absence of
quantitative information on decoherence.

Table 15: Minimum Gate Noise for Comparable Experimental and Simulation
Fidelities

Deutsch-Jozsa Grover Semi-classical QFT Case
Exp QX Noise Exp QX Noise Exp QX Noise

1 98.1(6) 98.55(9) 11 64(2) 64(1) 10 87(1) 86.8(4) 9
2 91.3(6) 91.7(3) 12 62(2) 63(1) 11 88(1) 88.6(4) 10
3 97.5(4) 97.55(9) 9 49(2) 51(1) 13 88(1) 88.8(4) 10
4 97.5(2) 97.4(1) 9 65(2) 65(1) 11 96(1) 96.3(1) 7
5 99(1) 99.9997 0

The table shows the experimental fidelities, the comparable simulation fidelities,
and the gate noise levels that produced the simulation fidelities. All the entries
other than the case indices are percentages. The results indicate that we
generally require about 10% noise in the gate application times for the
experimental and simulation results to be comparable. The poor fidelity for the
third case of the Grover algorithm requires a higher noise level (13%), and the
excellent fidelity for the period-eight state of the semi-classical QFT algorithm
does not require any noise.

4.5 Field Programmable Gate Array-Accelerated Simulation
As described previously, Quantum eXpress uses the density matrix
representation of the quantum state, requiring a 2Nx2N matrix to represent an N-
qubit system. Since the size of the density matrix grows exponentially in the
number of qubits, the size of the matrix multiplications needed to simulate a
quantum gate application also grows exponentially. This creates a tremendous
computational burden, making it important to explore alternative architectures for
the quantum simulator. Field Programmable Gate Arrays (FPGAs) are one such
alternative architecture [15].

FPGAs are semiconductor-based devices that contain user programmable logic
components. These components provide basic logic functions such as AND,
OR, XOR, and NOT functions. Starting with a blank piece of silicon, large and

47

complex systems can be constructed from these components. By carefully
crafting the memory architecture, an FPGA design can avoid the Von-Neumann
bottleneck that plagues general purpose processors (GPPs). The Von-Neumann
bottleneck refers to the limited bandwidth between the CPU and main memory;
only one memory request can be completed at a time. Since FPGAs can avoid
the sequential memory access limitation, they are very attractive for executing
parallelized algorithms. The major drawback of FPGAs is the time and effort
required to design and implement a highly optimized algorithm.

Prior Art
As the interest surrounding quantum computing has increased, researchers have
been developing various simulators, a few of which were based on FPGAs. The
scope of this research has been limited however, as many of the simulators are
applicable to only a narrow range of quantum algorithms.

Negovetic et al. of the Portland Quantum Logic Group at Portland State
University developed an FPGA-based quantum emulator [16]. Their emulator
was implemented using Verilog and can model quantum algorithms with one or
two qubits. Their emulator was evaluated on an algorithm that consisted of two
inverters and a Hadamard gate.

Fujishima, along with other researchers at the School of Frontier Sciences at the
University of Tokyo, developed their own emulator [17]. Theirs works as a
quantum index processor (QIP), which means that the quantum states are not
stored, only the indices of the "1"'s in the quantum state. This limits the operation
of the emulator, as it must use pre-defined lookup tables to simulate a quantum
gate.

Finally, a group from McGill University also developed a quantum algorithm
emulator in an FPGA [18]. In their approach, they model quantum algorithms as
"quantum circuits." These quantum circuits are generated using scripts the
group created. These scripts output VHDL, which can then be compiled and
executed on an FPGA. They support Walsh-Hadamard, Phase Shift, X, CNot,
and Z gates.

4.5.1 FPGA Hardware & Tools
GE Global Research has had prior experience using FPGA’s to optimize a
diverse set of applications. From this experience, GEGR has built up an array of
FPGA hardware and design tools, which were leveraged to design and simulate
an FPGA-based implementation of the Quantum eXpress engine.

FPGA Hardware
The objective of this work was to develop and simulate an FPGA design that
would provide an accurate understanding of real-world performance. To achieve
this objective the design was targeted to a particular FPGA device, setting
constraints such as the amount of memory addressable, the number of

48

multipliers that could be instantiated, and the clock speed at which the design
would operate. Quantum eXpress is very intense in terms of complex floating
point arithmetic. Floating point multiplications in particular use considerable
FPGA design space, making it necessary to choose a device that was relatively
large in terms of the number of resources available.

The FPGA device chosen was a Xilinx xc2vp100 on a BenBLUE-III module [19].
The xc2vp100 FPGA is in the Xilinx Virtex-II Pro family of parts. It contains
99,216 logic cells along with 7,992 Kbits of Block RAM. This is the second
largest FPGA in the Xilinx Virtex-II Pro family. Paired with the BenBLUE-III, the
module contains 64 MBytes of Zero Bus Turnaround (ZBT) SRAM in 8
independent banks with a data rate of 166 MHz. This whole module resides on a
Nallatech Bennuey-4E PCI motherboard [20].

Of particular importance is the ZBT SRAM. This memory is where the density
matrix and Hamiltonian matrices are stored. ZBT SRAM was used for two
reasons. First, these matrices are too large to fit into the FPGA's BRAM with
enough space left over to instantiate the design logic necessary for the quantum
simulator. Second, the ZBT (Zero Bus Turnaround) SRAM is fast–there is no
bus latency associated with the memory, and therefore there are no overhead
cycles when accessing the SRAM.

The Virtex-II Pro family, including the xc2vp100 chosen for this project, is based
on a CMOS SRAM fabric. Unlike other FPGAs based on technologies such as
anti-fuse, SRAM-based devices can be repeatedly reprogrammed.
Reconfigurability is advantageous for a number of reasons. First, it is particularly
useful during the debugging phase. If a design that was programmed onto an
FPGA contained errors, the FPGA can simply be re-written rather than
discarded. This is also useful since the FPGA can be upgraded in the field.
Another advantage comes from the fact that multiple FPGA designs can be
created to perform specific tasks. When a specific task is required, its associated
design can be loaded onto the FPGA.

FPGA Design Tools
Along with access to hardware, GEGR also has licenses available to several
software packages that aid in the development of FPGA designs. This includes
Nallatech's DIMETalk 3 software [21]. DIMETalk is a GUI-based FPGA design
environment. It allows users to build communication networks between algorithm
nodes, memory, and interfaces to other FPGAs and other computing systems.

Also used was Nallatech's DIME-C, which is a C-to-VHDL functional translator.
This was available through an early access program as the software is not yet
freely available. DIME-C creates VHDL components that plug into the DIMETalk
framework.

49

Initially, CVER, an open-source Verilog simulator, was used for simulating the
FPGA accelerator [22]. However, Nallatech's tools generate VHDL code, not
Verilog. Fortunately an evaluation license of Active-HDL 7.1 was obtained from
Aldec, replacing CVER and allowing us to simulate directly from the VHDL code
[23].

4.5.2 FPGA Design
The FPGA's greatest strength comes from its ability to take advantage of fine-
grained parallelism in designs. This parallelism is necessary to get any sort of
speed-up in a design ported to an FPGA. FPGAs run at much lower clock rates
than their general purpose processing counterparts. The maximum clock rate for
most designs using the Xilinx Virtex-II Pro family of devices is less than 200 MHz,
while the latest offerings for general purpose processors (GPPs) are all over 2
GHz. This means the same algorithm implemented without parallelism will
execute significantly faster on a GPP than on an FPGA.

FPGA Architecture for Quantum eXpress
In determining what aspect of the simulator to translate to the FPGA, it was
determined that the gate application portion of the design (covered in Section
4.1.2) was most suited. This is because the complex matrix multiplications in
that step can be highly parallelized. To achieve a high degree of parallelism the
matrices must be stored on fast memory accessible to the FPGA. Thus, the
memory and memory controller were placed on the FPGA, as well, as shown in
Figure 41. This reduced the data transfers from the host PC and the FPGA.

Front End &
Initialization

Core
Computation

Density Matrix
& Temps

Processor

FPGA Memory

Figure 41: FPGA & GPP Simulator Architecture

The general-purpose QX implementation starts with three inputs and consists of
four steps. The inputs are the density matrix, the Hamiltonian matrix, and the

50

gate indices to which the quantum gate is applied. The indices for the gate are
not necessarily in sequential order and may affect indices distributed throughout
the density matrix. This can be a serious detriment to performance on a general-
purpose processor. As an optimization, Quantum eXpress reorders the density
matrix so that the bits that will be operated on share a continuous memory space.

Density Matrix Hamiltonian Gate Indices

Quantum System

Build Permutation

Density Matrix
(temp)

Mapf

Mapr

Variables

Permute Matrix

Apply Gate
f1

f2

dt

Repeat ~100

Permute Matrix

Result (New
Density Matrix)

Figure 42: Architecture of Original GPP Implementation

After the density matrix is in standard form, the gate application computation is
performed, as shown in Figure 42. This is the most computationally intense part
of the simulation, consisting of a series of complex matrix multiplications. The
gate application routine is performed on the density matrix 100 times. Finally, the
density matrix is permuted again to bring it back to its original form and the
computation is complete.

51

An advantage of the FPGA-based implementation is that there is no need to re-
arrange the density matrix before performing the gate application. An FPGA has
no cache. As such, there is no penalty for a cache miss like on a general-
purpose processor. On an FPGA the time to read and write to a memory location
is constant, independent of the address that is being referenced. These factors
have the effect of greatly reducing the complexity of the FPGA architecture.

Density Matrix Hamiltonian Gate Indices

Quantum System

Build Memory Map

Mapf

Variables

Apply Gate
f1

f2

dt

Repeat ~100

Result (New
Density Matrix)

Figure 43: Architecture of FPGA Implementation

For the FPGA-based implementation, a memory map is still created as shown in
Figure 43. The mapping is used to make the density matrix appear sequential in
terms of the gate application, but the physical location of the bits in memory are
not changed. This greatly simplifies the gate application algorithm. And since
the density matrix does not have to be permuted, a copy does not have to be
created, saving both time and memory.

Another major architecture change lies in the gate application computation.
Originally, this consisted of a single operating thread that computed each
element in the resulting density matrix serially. Taking advantage of the fine-
grained parallelism of the FPGA, multiple operations can be computed at once.
This is particularly useful for complex matrix multiplications. For example, the

52

individual element-wise multiplications of the real and imaginary parts can be
computed simultaneously. Results of the intermediate steps are then summed to
get the final complex multiplication result. Further, for a gate matrix of size 2gx2g,
2g element-wise multiplications can be computed at once. This offers significant
savings; particularly as the gate size g increases. In the original complex
multiplication implementation the simple element-wise multiplication needed to
be iterated over 22g times. After the optimization, these 22g iterations were
replaced with 2g complex multiplications, dramatically reducing the total number
of operations necessary to complete one cycle of the gate application. Figure 44
illustrates the reduction in the number of iterations necessary to apply a gate
operating on two qubits. Figure 45 shows the iteration reduction for a gate size
of three qubits. For both cases, as the number of qubits in the system increases,
the effect of the optimization becomes more and more pronounced.

0

5000

10000

15000

20000

25000

30000

4 6 8 10 12 14 16
Qubits

Ite
ra

tio
ns

optimized
un-optimized

Figure 44: Iteration Reduction in Evaluating Master Equation for Gate Size g = 2

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

4 6 8 10 12 14 16
Qubits

Ite
ra

tio
ns

optimized
un-optimized

Figure 45: Iteration Reduction in Evaluating Master Equation for Gate Size g = 3

53

The fine-grained parallelism affects the pipeline of the FPGA. As expected, the
number of operations that occur in parallel dramatically increases, increasing the
FPGA's resource utilization. Pre- and post-optimization pipeline diagrams
generated by Nallatech's DIMEC tools are shown in Figure 46 and Figure 47,
respectively, showing the pipeline length in the horizontal axis and the parallel
operations in the vertical axis.

Figure 46: Un-Optimized Pipeline

Figure 47: Optimized Pipeline

The increase in the pipeline width due to the parallelism from loop unrolling is
quite noticeable. For the initial QX implementation, iterating over the same code
many times performed much of the computation. After the FPGA optimizations
many more operations occur in parallel. Towards the end of each of the loops in
the pipeline diagram the number of parallel operations converge until there is
only one operation occurring—the results from the previous operations are
combined to produce a single element in the density matrix.

The design of the FPGA-accelerated quantum simulator was done using
DIMETalk and DIMEC. DIMEC was used to develop the computationally intense
gate application portion of the design. DIMEC claims to be an ANSI C-to-VHDL
functional translator, however, it currently suffers from a number of limitations.
DIMEC is unable to parse ANSI C pointers, multi-dimensional arrays, structures,
unions, enumerated types, switch statements, and do-while loops. It was rather
awkward working around its gaps in the ANSI C specification, especially when
trying to port previously developed source code. Even with these restrictions
DIMEC is very powerful for rapidly implementing FPGA-accelerated algorithms,
however.

Using C as a code base was particularly beneficial for several reasons. Standard
tools can be used for the initial design, such as a familiar C development

54

environment. Debugging the initial implementation was easier because the
availability of a standard C compiler and debugging tools.

After the algorithm was validated, it was modified to fit conventions of DIMEC.
These conventions include specifying the inputs and outputs to the algorithm
along with the storage format of these parameters. The parameters consist of
the density matrix, gate Hamiltonian, time for each iteration of the gate
application, and the number of times to iterate. The density matrix and the gate
Hamiltonian are stored on the on-board, off-chip ZBT SRAM, as mentioned
previously. It should be noted that the data type used for storing data in SRAM is
slightly different than that used for performing the computations on the FPGA.
These differences are described in Appendix A – FPGA Floating Point Formats.

After creating the DIMEC gate application module it was placed into the
DIMETalk environment. The DIMETalk design environment allows the user to
create a system communication diagram to specify the high-level design. This is
done by first specifying the communication host, in this case a PCI host interface.
From there, the system components are laid out. Four ZBT SRAM memory
nodes were created, one for each of the real and imaginary components of the
density matrix and Hamiltonian. A memory map is used by the DIMEC
component for access to BRAMs. Routers are instantiated to handle the
communication between all of the DIMETalk nodes. Finally, the design is
"wrapped" with a description of the hardware onto which it will be programmed,
as shown in Figure 48.

55

Figure 48: DIMETalk Diagram for the FPGA Accelerator

After creating this diagram, DIMETalk generates a VHDL description of the entire
system. These components can then be synthesized, placed, routed, and put
onto a hardware device. None of the I/O associated with the design has been
constrained to the hardware, however. For it to actually operate on a hardware
device, the I/O must be assigned to specific pins on the FPGA.

4.5.3 Design Limitations
The first major limitation of the design is that it can only simulate quantum
systems that are 6 qubits or smaller. This limitation comes from the fact that the
device selected, the BenBlue III, contains 64 MBytes of ZBT SRAM in 8
independent banks. At 32 bits per element in the density matrix, the largest
system that could be stored in a single bank of SRAM was 6 qubits. This is with
the density matrix split so that its real and imaginary components occupy
separate memory banks. If a more complex memory controller was created, a
larger density matrix could be stored that spans different banks in the SRAM.

56

Another limitation of this design is that the number of qubits in the system is fixed
at design time and cannot be changed dynamically at run time with no loss of
resources. In order to simulate quantum systems with different sizes of qubits
and different gate sizes there are two options.

The first option involves creating an overly large design with the maximum
number of qubits and gate sizes. This design would be created and loaded onto
the FPGA for each gate simulation. A parameter would identify how many of the
total qubits are actually being utilized. The design would then ignore the unused
qubits. However, by loading the FPGA with an overly large design, the design
itself is not optimal and there is overhead from performing needless
computations. Also, since resources on the FPGA are being allocated for no
reason, there is an additional impact from unnecessary power consumption. This
option was chosen for implementation in this research effort.

The second option would involve pre-designing, creating, and compiling bit-files
for every possible system size that could be simulated. These bit-files could be
stored in a repository and programmed on the FPGA just before simulation. This
scheme provides the most hardware efficiency at the cost of a significant amount
of up-front work to create all of the bit-files.

4.5.4 Testing Procedure
The FPGA-based design was simulated using Aldec's Active-HDL 7.1, an easy-
to-use simulation environment for VHDL. Two of the three test cases from
Section 4.1.1 could fit within the FPGA simulator design: the 3 qubit and 5 qubit
ones. The Active HDL simulator was paused after each gate application routine
had completed, to record its execution time. This time was benchmarked against
the execution time of the gate application portion of the single processor
implementation of Quantum eXpress. Quantum eXpress was run on an HP
wx9300 workstation based on an AMD Opteron 280 dual processor dual core
system clocked at 2.4 GHz. The system had 4GB of RAM running Windows XP
Professional x64 Edition and Sun's Java 1.5.0-b64 JVM, a high-end workstation
at the time of this writing.

The time used to compare the GPP and FPGA simulations was the sum of the
gate application times. Additional overhead for the algorithm configuration, such
as data load time, was not considered. The speedup of the FPGA vs. the single
processor implementation was calculated using the equation:

∑
∑=

n timesapplicatio gate simulationFPGA
n timesapplicatio gate QX

up-Speed . (46)

4.5.5 Results

57

Figure 49 shows the speed-ups achieved for the two algorithms. It was found
that the FPGA simulator took roughly 10ms to apply each CNOT gate in the 3-
qubit test case. For the total algorithm, the FPGA speedup over the single
processor implementation of Quantum eXpress was 12.4x. For the 5-qubit test
case, the speedup of the FPGA implementation was found to be 26.9x over the
single processor implementation.

26.9

12.4

0
5

10
15
20
25
30

3 5
Qubits in System

Sp
ee

d-
up

Figure 49: Speed-up of FPGA vs. Single Processor GPP Implementation

For the 3-qubit test case all of the gates in the algorithm are identical. The
speedup for each individual gate was 12.4x and thus, aggregating this speedup
across the algorithm yields the same speedup.

The 5-qubit test case is composed of two types of gates. The first set is three
CCNOT gates that have a gate width of 3. The second set is 3 CNOT gates that
operate on 2 of the 5 qubits in the system. The average speedup for the 3-qubit
CCNOT gates was 35.5x and the speedup for the 2-qubit CNOT gates was
18.2x. As expected, as the number of qubits in the system increased, so did the
speedup. Additionally, as the gate width increased, the speedup also increased.
The FPGA accelerator was designed to take advantage of the fine-grained
parallelism available during the gate application. As the gate width increases,
there is more opportunity for parallelism and thus we get a bigger speedup. The
FPGA implementation appears to scale very well as the size of the quantum
system increases.

Single vs. Double Precision
All of the floating point cores used in the FPGA implementation are single
precision. In Quantum eXpress, all of the mathematical operations are
performed using double precision floating point. In order to assess the impact of
reducing the precision, we calculated the root mean-squared error (RMSE)
across all of the final state measurements. This came to 3.08*10-8 for the 3-qubit
test case, the errors for which are shown in Table 16.

58

Table 16: Precision Comparison for 3 Qubit Test Case

Quantum State GPP double FPGA single Error
|000> 0.5 0.5 0
|001> 0 0 0
|010> 0 0 0
|011> 0 0 0
|100> 9.64E-05 9.64E-05 -1.09539E-09
|101> 0.499661 0.499661 4.7733E-08
|110> 1.96E-04 1.96E-04 1.21768E-08
|111> 4.67E-05 4.68E-05 -7.20057E-08

 sum = 1 sum = 1 RMSE = 3.08479E-08

For the second test case, the root mean-squared error came to 3.45*10-6, with
the individual state errors shown in Table 17. The RMSE for this case was
several orders of magnitude greater than in the previous test case. This is
because after each gate in an algorithm, the loss in precision is being aggregated
and the errors become more pronounced. At this stage, the error is still
insignificant but for larger algorithms, the error could accumulate to unacceptable
levels. At what size algorithm the errors become unacceptable requires further
investigation.

Table 17: Precision Comparison for 5 Qubit Test Case

Quantum State GPP double FPGA single Error
|00000> 0 0 0
|11100> 4.64E-07 4.61E-07 3.15396E-09
|11101> 6.83E-04 6.77E-04 5.24537E-06
|11110> 6.79E-04 6.79E-04 -4.32934E-07
|11111> 0.998638 0.998644 -5.63888E-06

 sum = 1 sum = 1.000001 RMSE = 3.44959E-06

5.0 CONCLUSIONS
We were able to significantly improve the performance of Quantum eXpress by
focusing our attention on optimizing the key operations performed by the
simulator: large matrix multiplications. By taking advantage of the structure of
the matrices used, we were able to reduce both the number of calculations
performed and the memory requirements. A third benefit of the optimizations
was the resulting operations naturally lent themselves to a parallelized
evaluation, so we were able to distribute the simulator computation across a high
performance computing cluster. The optimizations and subsequent distribution
across a cluster significantly improved the performance of the simulator. Now,
quantum algorithm researchers can use Quantum eXpress to exercise and
quantify the performance of quantum algorithms with both decoherence and
noise in an interactive environment.

We were also able to enhance the simulator to calculate a step-by-step
comparison of the ideal quantum algorithm execution to the actual (decoherence

59

and/or noise-affected) simulation. These differences can be visualized as
heatmaps in the enhanced Quantum eXpress graphical user interface, allowing
researchers to better study the effects of errors and error propagation in a
quantum system.

We found that Quantum eXpress is capable of accurately modeling ion trap
quantum computers. Due to experimental limitations, we were unable to test all
of the simulator’s capabilities (decoherence, qutrits, algorithms with four or more
qubits, etc.), but it performed well compared to the most advanced publicly
available experimental results. In particular, compared to the ideal algorithms,
and in the absence of noise, the simulator’s absolute probability errors were
within 0.002%. We also found that the simulator is more accurate than the
experiments when decoherence and systematic errors in state preparation and
measurement are not modeled. We found that the simulation and experimental
fidelities are comparable when gate noises of about 10% of the target application
times are used.

Finally, we were able to create an FPGA-based quantum accelerator that took
advantage of the fine-grained parallelism that is present during quantum gate
applications. This yielded a significant speed-up in a 3-qubit algorithm and an
even more substantial speed-up for a 5-qubit algorithm. Additionally, the effects
of simulating the quantum algorithms using single precision floating point was
compared to simulating with double precision. It was determined that the
precision reduction in the data type had a negligible effect on the results of the
two test cases.

5.1 Proposed Future Work
The major problem faced by Quantum eXpress or any density matrix-based
simulation is the size of the representation of the quantum state, which is 22N.
This manifests itself in three ways. The first manifestation is in the amount of
memory required to store the state and the amount of temporary memory
required to compute the state update. Second, it manifests itself in the time
required to update the state. The third manifestation is the volume of information
generated during a simulation, which could be useful for debugging and
understanding error correction strategies. In this work we addressed the first two
issues.

The remaining execution time issue to be addressed is the efficient simulation of
amplitude decoherence. This represents a challenge because it does not
maintain the locality demonstrated above for phase decoherence. There is hope,
however, because the resulting computation does exhibit a very well behaved
non-local reference pattern.

The next major challenge is posed by the development of tools for storing and
examining the results of a simulation. The volume of data generated during the
running of even a simple quantum algorithm is astronomical. The user will need

60

new tools to help in the identification of areas of interest and agile means for
manipulating the data to bring those areas into view.

The focus of the FPGA accelerator effort was on taking advantage of the fine-
grained parallelism inherent in the quantum gate application algorithm. There is
still a lot of room for improvement in terms of performance, however. Most
notably would be to create multiple execution kernels on the FPGA.

In the current implementation, there is only one active execution kernel on the
FPGA. However, many more could be easily added. The algorithm can be
parallelized in the same way the distributed simulation was configured, by
distributing portions of the density matrix and Hamiltonian over several nodes.
This scheme would still hold on an FPGA-based architecture. Each node could
be a kernel running on an FPGA. Additionally, this scheme could be used to
span multiple FPGAs. As long as each FPGA receives their portion of the
density matrix there is no need for the kernels to all run on the same device.

Using the distributed scheme across multiple FPGAs has the added benefit of
being able to handle quantum systems that have a larger number of qubits. The
whole density matrix does not have to reside on a single FPGA, alleviating the
memory constraints that limited the current implementation to simulations with 6
qubits. A design incorporating multiple FPGAs could allow us to simulate more
qubits than possible using a cluster of conventional computing nodes.

Finally, the FPGA design was only simulated—a natural next step would be to
test this design on a physical field programmable gate array device.

6.0 ACKNOWLEDGEMENTS
The authors would like to thank Dr. Lenore Mullin of the State University of New
York, Albany for many discussions of the Psi calculus and how it could be used
to view the fundamental structures in the simulation [24]. The Psi calculus
supports the explicit manipulation of dimensions of an array in a way that
simplifies much of what was presented in Section 4.1.2.

The authors would also like to thank Steven Drager and Captain Earl Bednar of
the Air Force Research Laboratory for their guidance in shaping this research
effort, and for time spent configuring and testing Quantum eXpress on the AFRL
cluster.

61

7.0 REFERENCES

1. P.W. Shor, Algorithms for Quantum Computation: Discrete Logarithms and

Factoring, Proceedings of the 35th Annual Symposium on Foundations of
Computer Science, IEEE Computer Society Press, p124-134, 1994.

2. K.S. Aggour, M.J. Simon, R. Guhde, and M.K. Simmons, Simulating Quantum

Computing: Quantum eXpress. Proceedings of the Winter Simulation
Conference, v1, p932-940, New Orleans, LA, USA, 2003.

3. D.J. Griffiths, Introduction to Quantum Mechanics. New Jersey: Prentice Hall,

1995.

4. W.H. Louisell, Quantum Statistical Properties of Radiation. New York: John

Wiley and Sons, 1973.

5. R. Schnathorst, Numerical simulation of master equations, internal

communication, May 1, 2003.

6. Z. Meglicki, Introduction to Quantum Computing, http://beige.ucs.indiana.edu

/M743/, last accessed October 16, 2006.

7. R. Schnathorst, Decoherence: Examples and test cases, internal

communication, July 22, 2003.

8. T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms. New

York: The MIT Press, 1989.

9. W. Grosso, Java RMI. Cambridge: O’Reilly Media, 2001.

10. E.W. Weisstein, Frobenius Norm. MathWorld—A Wolfram Web Resource.

http://mathworld.wolfram.com/FrobeniusNorm.html, last accessed October
11, 2006.

11. S. Gulde, "Experimental Realization of Quantum Gates and the Deutsch-

Jozsa Algorithm with Trapped 40Ca+ Ions." Ph. D. Dissertation, Institut für
Experimentalphysik, Innsbruck University, Austria, March 2003.

12. K.-A. Brickman, P. C. Haljan, P. J. Lee, M. Acton, L. Deslauriers, and C.

Monroe, “Implementation of Grover's Quantum Search Algorithm in a
Scalable System." Phys. Rev. A 72, 050306, 2005.

62

http://beige.ucs.indiana.edu /M743/
http://beige.ucs.indiana.edu /M743/
http://mathworld.wolfram.com/FrobeniusNorm.html

13. J. Chiaverini, J. Britton, D. Leibfried, E. Knill, M. D. Barrett, R. B. Blakestad,
W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, T. Schaetz, and D.J. Wineland,
“Implementation of the semiclassical quantum Fourier transform in a scalable
system.” Science v308, p997-1000, 2005.

14. D. L. Moehring, M. Acton, B. B. Blinov, K.-A. Brickman, L. Deslauriers, P. C.

Haljan, W. K. Hensinger, D. Hucul, R. N. Kohn, Jr., P. J. Lee, M. J. Madsen,
P. Maunz, S. Olmschenk, D. Stick, M. Yeo, and C. Monroe, “Ion Trap
Networking: Cold, Fast, and Small.” Proceedings of the XVII International
Conference on Laser Spectroscopy, edited by E. A. Hinds, A. Ferguson and
E. Riis, (World Scientific, Singapore) p421-428, 2005.

15. K.D. Underwood, K.S. Hemmert, "Closing the Gap: CPU and FPGA Trends in

Sustainable Floating-Point BLAS Performance," FCCM, 12th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines
(FCCM'04), p219-228, 2004.

16. G. Negovetic, M. Perkowski, M. Lukac, and A. Buller,"Evolving quantum

circuits and an FPGA-based Quantum Computing Emulator." Proc. Intern.
Workshop on Boolean Problems, p15-22, 2002.

17. M. Fujishima, "FPGA-based high-speed emulator of quantum computing,"

Field-Programmable Technology, December, p21-26, 2003.

18. A.U. Khalid, Z. Zilic, K. Radecka, "FPGA emulation of quantum circuits,"

ICCD, p310-315, 2004.

19. Nallatech FPGA Computing Modules. http://www.nallatech.com/

?node_id=1.2.1&id=3, last accessed October 15, 2006.

20. Nallatech BenNUEY PCI 4E. http://www.nallatech.com/?node_id=1.2.2&id=2,

last accessed October 15, 2006.

21. Nallatech DIMETalk FPGA Computing Design Tool.

http://www.nallatech.com/?node_id=1.2.2&id=19, last accessed Oct 15, 2006.

22. Pragmatic C Software, Cver. http://www.pragmatic-c.com/gpl-cver/, last

accessed October 15, 2006.

23. Aldec Active-HDL. http://www.aldec.com/products/active-hdl/, last accessed

October 15, 2006.

24. L.M.R. Mullin, A Mathematics of Arrays, Ph.D. Thesis, Syracuse University,

1988.

63

http://www.nallatech.com/

Appendix A – FPGA Floating Point Formats
A consequence of storing data in SRAM is that it must be stored as an IEEE754
data type, shown in Figure 50. IEEE754 is a standard 32 bit floating point data
type. This data type is also used for all data transfers between the FPGA and
any external devices such as a host PC. All floating point computations on the
FPGA are performed using Nallatech's floating point cores, however, which use
Nallatech's own 38-bit float type, also shown in Figure 50. The slightly wider
floating point type was designed to handle overflows that may occur during
mathematical operations such as multiplications.

Figure 50: Floating Point Formats

64

	PROJECT GOALS
	Enhance Existing Quantum Computer Simulator
	Verify Simulator’s Accuracy Against Experimental Data
	Simulate Quantum Simulator on an FPGA

	SIMULATOR OVERVIEW
	State Representation and the Master Equation
	Evaluating Algorithms in Quantum eXpress
	Input
	Algorithm Simulation
	Simulation Without Decoherence
	Simulating Decoherence
	Decoherence Examples
	Phase Damping
	Amplitude Damping

	Simulating Device Imperfections/Noise

	Output

	SUMMARY OF KEY ACCOMPLISHMENTS
	DETAILS OF KEY ACCOMPLISHMENTS
	Performance Enhancement via Matrix Multiplication Optimizati
	Test Cases
	No Decoherence
	3 Qubit

	Multiplication Optimizations
	Optimization Results
	No Decoherence
	3 Qubit
	3 Qubit

	Port to High Performance Computing Cluster
	Density Matrix Distribution
	Distributed Simulation
	Nodes
	Original
	Decoherence
	3 Qubit
	3 Qubit

	Ideal vs. Actual Density Matrix Comparisons
	Visualizing Matrix Differences
	Color
	Default Cutoff

	Simulator Verification
	Experimental Data Collection
	Modeling Experiments in the Simulator
	Deutsch-Jozsa Algorithm
	Grover Algorithm
	Semi-classical QFT Algorithm

	Results Analysis
	Comparison with Ideal Results
	Comparison with Experimental Results
	Case

	Field Programmable Gate Array-Accelerated Simulation
	FPGA Hardware & Tools
	FPGA Design
	Design Limitations
	Testing Procedure
	Results

	CONCLUSIONS
	Proposed Future Work

	ACKNOWLEDGEMENTS
	REFERENCES
	Appendix A – FPGA Floating Point Formats

